utomata

Approach to Probabilistic Verification

• p-automata read an entire Markov chain as input and either accept or reject it.

• Their definition combines the combinatorial structure of alternating automata with the ability to quantify probabilities of regular sets of paths.

 Two probabilistic quantifiers: one tallies probabilities of immediate next locations (reminiscent of the X operator in PCTL); the other measures the probabilities of regular path sets.

Markov Chains

A finitely branching, countable labeled Markov chain M over set of propositions \mathbb{A} is a tuple (S,P,s^{in},L) , where S is a countable set of locations, P a stochastic matrix, s^{in} initial location, and L(s) the set of propositions true in location $\ensuremath{\mathrm{s}}.$

 Transitions are positive Boolean formulas with an extended base set, combining states q with threshold obligations: $[\![q]\!]_{>0.5}$ says that the path set represented by q has probability ≥ 0.5 . • A probabilistic separation operator * decomposes the witness path set for a probability threshold into disjoint subsets: $*([\![q_1]\!]_{\ge p1}, [\![q_2]\!]_{\ge p2})$ says that the path set determined by state q_i has probability at least p_i for i=1,2; and that the sets measured by these probabilities are disjoint. (Think "disjoint and".)

p-Automata

A p-automaton \mathcal{A} is a tuple $\langle \Sigma, \mathrm{Q}, \delta, \phi^{\mathrm{in}}, \alpha \rangle$, where Σ is a finite input alphabet, Q is a set of states, $\delta: \mathbb{Q} \times \Sigma \rightarrow \mathcal{B}^+(\mathbb{Q} \cup \llbracket \mathbb{Q} \rrbracket)$ the transition function, $\phi^{\rm in}$ the initial condition, $\alpha \subseteq Q$ an ac- $[\![q_1]\!]_{>0}$ ceptance condition, and [Q] $= \{ \llbracket \mathbf{q}_i \rrbracket_{\geq pi}, *(\llbracket \mathbf{q}_1 \rrbracket_{\geq p1}, ..., \llbracket \mathbf{q}_n \rrbracket_{\geq pn})$ $|q_i \in Q, p_i \in [1,0], n \in \mathbb{N}$

Example

Let $\mathcal{A} = \langle \mathcal{P}(\{a,b\}), \{q_1,q_2\}, \delta, \llbracket q_1
rbracket_{\geq 0.5}, \{q_2\} \rangle$ be a p-automaton with δ as follows (and as in the graph above): $\delta(\mathbf{q}_{\scriptscriptstyle 1},\!\{\mathbf{a},\!\mathbf{b}\}) = \delta(\mathbf{q}_{\scriptscriptstyle 1},\!\{\mathbf{a}\}) = \mathbf{q}_{\scriptscriptstyle 1} \lor \, \llbracket\![\mathbf{q}_{\scriptscriptstyle 2}]\!\rrbracket_{\geq 0.5}$ $\delta(\mathbf{q}_2^{},\!\{\mathbf{a},\!\mathbf{b}\}) = \delta(\mathbf{q}_2^{},\!\{\mathbf{b}\}) = [\![\mathbf{q}_2^{}]\!]_{\geq 0.5}$ $\delta(\mathbf{q_1},\{\,\}) = \delta(\mathbf{q_1},\{\,\mathbf{b}\,\}) = \delta(\mathbf{q_2},\{\,\mathbf{a}\,\}) = \delta(\mathbf{q_2},\{\,\mathbf{a}\,\}) = \texttt{false}$ Term $[\![\mathbf{q}_2]\!]_{\geq 0.5}$ represents the recursive property ϕ , that atomic

proposition b holds at the location presently read by q, and that ϕ will hold with probability at least 0.5 in the next locations. State ${\rm q}_{_1}$ asserts that it is possible to get to a location that satisfies $\left[\!\left[q_2\right]\!\right]_{\geq 0.5}$ along a path that satisfies atomic proposition a. The initial condition $[\![q_1]\!]_{>0.5}$ means the set of paths satisfying aU ϕ has probability at least 0.5.

Games for acceptance & simulation

Acceptance $M \in \mathcal{L}(\mathcal{A})$ and simulation $\mathcal{A} \leq \mathcal{B}$ can be decided through a series of stochastic games and games. (EXPTIME in the sizes of \mathcal{A} and M. Some conditions on \mathcal{A} and \mathcal{B} for simulation.)

Example The stochastic game $G_{M,((q_1))}$ for the SCC $((q_1))$ depicts stochastic configurations as diamond and configurations from other SCCs as hexagons (with the hexagon labeled $(s_1, [[q_2]]_{>0.5})$ having value 1 and all others having value 0). As none of the configurations are accepting, Po can only win by reaching optimal hexagons. Hexagon $(s_1,[\![q_2]\!]_{\geq 0.5})$ has value 1 and is the optimal choice for P_0 from configuration $(s_1, q_1 \vee \llbracket q_2 \rrbracket_{>0.5})$. As $(s_2,q_1 \lor \llbracket q_2 \rrbracket_{>0.5})$ has value 0, the value for $\hat{P_0}$ of diamond configuration (s_1, q_1) is 0.5. Initial configuration $(s_0, [\![q_1]\!]_{>0.5})$ is a trivial

bounded SCC; its value equals $1 \text{ as } \frac{1}{3}val(s_0,q_1 \vee [\![q_2]\!]_{\geq 0.5}) + \\$ $\frac{1}{3} \text{val}(s_1, q_1 \vee [\![q_2]\!]_{> 0.5}) + \frac{1}{3} \text{val}(s_2, q_1 \vee [\![q_2]\!]_{> 0.5}) \text{ is } 0.5. \text{ Thus } M \in$ $\mathcal{L}(\mathcal{A}).$

Properties

- p-automata are closed under Boolean operations.
- The language of a p-automaton is closed under bisimulation.

ance of Markov chains by p-automata \mathcal{A} . The complexity of the acceptance game then matches that of model checking.

 \bullet Markov chain ${\rm M}\,$ can be embedded as a p-automaton accepting the language of Markov chains that are bisimilar to M. • PCTL formula ϕ can be expressed as language $\mathcal{L}(\mathcal{A})$, and PCTL model checking can be reduced to deciding the accept-

- Language containment and emptiness are equi-solvable.
- Simulation between p-automata that stem from Markov chains or PCTL formulas is decidable in EXPTIME and underapproximates language containment.

Conclusions

 p-automata are a complete abstraction framework for PCTL: if an infinite Markov chain M satisfies a PCTL formula ϕ , there is a *finite* p-automaton that abstracts M and whose language is contained in that of the p-automaton for ϕ .

• Emptiness, universality, and containment of p-automata seem

Imperial College London

tightly related to the open problem of decidability of PCTL satisfiability.

Full paper p-Automata: New Foundations for Discrete-Time Probabilistic Verification. To appear in Proc. of QEST 2010.

Michael Huth, Nir Piterman, Daniel Wagner {m.huth, nir.piterman, d.wagner}@imperial.ac.uk **Department of Computing** Imperial College London