Approach to Probabilistic Verification
 - p-automata read an entire Markov chain as input and either
 - Transitions are positive Boolean formulas with an extended

accept or reject it.

- Their definition combines the combinatorial structure of alternating automata with the ability to quantify probabilities of regular sets of paths.
- Two probabilistic quantifiers: one tallies probabilities of immediate next locations (reminiscent of the X operator in PCTL); the other measures the probabilities of regular path sets.

Markov Chains

A finitely branching, countable labeled Markov chain M over set of propositions \mathbb{A} is a tuple $\left\langle\mathrm{S}, \mathrm{P}, \mathrm{s}^{\mathrm{in}}, \mathrm{L}\right\rangle$, where S is a countable set of locations, P a stochastic matrix, $\mathrm{s}^{\text {in }}$ initial location, and L(s) the set of propositions true in locations.

base set, combining states q with threshold obligations: $\llbracket q \rrbracket_{>0.5}$ says that the path set represented by q has probability ≥ 0.5. - A probabilistic separation operator $*$ decomposes the witness path set for a probability threshold into disjoint subsets: $*\left(\llbracket q_{1} \rrbracket_{\geq \mathrm{p} 1},\left[\mathrm{q}_{2} \rrbracket_{\geq \mathrm{p} 2}\right)\right.$ says that the path set determined by state q_{i} has probability at least p_{i} for $i=1,2$; and that the sets measured by these probabilities are disjoint. (Think "disjoint and".)

p-Automata

A p-automaton \mathcal{A} is a tuple $\left\langle\Sigma, \mathrm{Q}, \delta, \phi^{\text {in }}, \alpha\right\rangle$, where Σ is a finite input alphabet, Q is a set of states, $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathcal{B}^{+}(\mathrm{Q} \cup \llbracket \mathrm{Q} \rrbracket)$ the transition function, $\phi^{\text {in }}$ the initial condition, $\alpha \subseteq \mathrm{Q}$ an acceptance condition, and $\llbracket \mathrm{Q} \rrbracket$ $=\left\{\llbracket q_{\mathrm{i}} \rrbracket_{\geq \mathrm{pi}}, *\left(\llbracket \mathrm{q}_{1} \rrbracket_{\geq \mathrm{p} 1}, \ldots, \llbracket \mathrm{q}_{\mathrm{n}} \rrbracket_{\geq \mathrm{pn}}\right)\right.$ $\left.\mid \mathrm{q}_{\mathrm{i}} \in \mathrm{Q}, \mathrm{p}_{\mathrm{i}} \in[1,0], \mathrm{n} \in \mathbb{N}\right\}$.

Example

Let $\mathcal{A}=\left\langle\mathcal{P}(\{\mathrm{a}, \mathrm{b}\}),\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}, \delta,\left[\mathrm{q}_{1}\right]_{\geq 0.5},\left\{\mathrm{q}_{2}\right\}\right\rangle$ be a p-automaton with δ as follows (and as in the graph above):
$\delta\left(\mathrm{q}_{1},\{\mathrm{a}, \mathrm{b}\}\right)=\delta\left(\mathrm{q}_{1},\{\mathrm{a}\}\right)=\mathrm{q}_{1} \vee \llbracket \mathrm{q}_{2} \rrbracket_{\geq 0.5}$ $\delta\left(\mathrm{q}_{2},\{\mathrm{a}, \mathrm{b}\}\right)=\delta\left(\mathrm{q}_{2},\{\mathrm{~b}\}\right)=\llbracket \mathrm{q}_{2} \rrbracket_{\geq 0.5}$
$\delta\left(\mathrm{q}_{1},\{ \}\right)=\delta\left(\mathrm{q}_{1},\{\mathrm{~b}\}\right)=\delta\left(\mathrm{q}_{2},\{\mathrm{a}\}\right)=\delta\left(\mathrm{q}_{2},\{ \}\right)=$ false
Term $\llbracket q_{2} \rrbracket_{\geq 0.5}$ represents the recursive property ϕ, that atomic
proposition b holds at the location presently read by q_{2} and that ϕ will hold with probability at least 0.5 in the next locations. State q_{1} asserts that it is possible to get to a location that satisfies $\llbracket q_{2} \rrbracket_{>0.5}$ along a path that satisfies atomic proposition
a. The initial condition $\llbracket q_{1} \rrbracket_{\geq 0.5}$ means the set of paths satisfying $\mathrm{aU} \phi$ has probability at least 0.5 .

Games for acceptance \& simulation

Acceptance $\mathrm{M} \in \mathcal{L}(\mathcal{A})$ and simulation $\mathcal{A} \leq \mathcal{B}$ can be decided through a series of stochastic games and games. (Exptime in the sizes of \mathcal{A} and M . Some conditions on \mathcal{A} and \mathcal{B} for simulation.)
Example The stochastic game $\mathrm{Gm}_{\left.\mathrm{m},\left(\mathrm{q}_{1}\right)\right)}$ for the SCC $\left(\left(\mathrm{q}_{1}\right)\right)$ depicts stochastic configurations as diamond and configurations from other SCCs as hexagons (with the hexagon labeled ($\mathrm{s}_{1},\left[\mathrm{q}_{2} \rrbracket_{\geq 0.5}\right.$) having value 1 and all others having value 0). As none of the configurations are accepting, P_{0} can only win by reaching optimal hexagons. Hexagon $\left(\mathrm{s}_{1},\left[\mathrm{q}_{2} \rrbracket_{>0.5}\right)\right.$ has value 1 and is the optimal choice for P_{0} from configuration $\left(\mathrm{s}_{1}, \mathrm{q}_{1} \vee \llbracket \mathrm{q}_{2} \rrbracket_{\geq 0.5}\right)$. As $\left(\mathrm{s}_{2}, \mathrm{q}_{1} \vee\left[\mathrm{q}_{2} \rrbracket_{\geq 0.5}\right)\right.$ has value 0 , the value for P_{0} of diamond configuration $\left(\mathrm{s}_{1}, \mathrm{q}_{1}\right)$ is 0.5 . Initial configuration $\left(\mathrm{s}_{0},\left[\mathrm{q}_{1} \rrbracket_{\geq 0.5}\right)\right.$ is a trivial
bounded SCC; its value equals 1 as $\frac{1}{3} v a l\left(s_{0}, q_{1} \vee \llbracket q_{2} \rrbracket_{\geq 0.5}\right)+$ ${ }^{\frac{1}{3}} \operatorname{val}\left(\mathrm{~s}_{1}, \mathrm{q}_{1} \vee \llbracket \mathrm{q}_{2} \rrbracket_{\geq 0.5}\right)+\frac{1}{3} \mathrm{Val}\left(\mathrm{s}_{2}, \mathrm{q}_{1} \vee \llbracket \mathrm{q}_{2} \rrbracket_{\geq 0.5}\right)$ is 0.5 . Thus $\mathrm{M} \in$ $\mathcal{L}(\mathcal{A})$.

Properties

- p-automata are closed under Boolean operations.
- The language of a p-automaton is closed under bisimulation.
- Markov chain M can be embedded as a p-automaton accepting the language of Markov chains that are bisimilar to M.
- PCTL formula ϕ can be expressed as language $\mathcal{L}(\mathcal{A})$, and PCTL model checking can be reduced to deciding the accept-
ance of Markov chains by p -automata \mathcal{A}. The complexity of the acceptance game then matches that of model checking. - Language containment and emptiness are equi-solvable. - Simulation between p-automata that stem from Markov chains or PCTL formulas is decidable in Exptime and underapproximates language containment.

Conclusions

- p-automata are a complete abstraction framework for PCTL: if an infinite Markov chain M satisfies a PCTL formula ϕ, there is a finite p -automaton that abstracts M and whose language is contained in that of the p-automaton for ϕ.
- Emptiness, universality, and containment of p-automata seem
tightly related to the open problem of decidability of PCTL satisfiability.

Full paper p-Automata: New Foundations for Discrete-Time Probabilistic Verification. To appear in Proc. of QEST 2010.

