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Markov Chains with
Population Structure

Queueing networks => many performance
models of communication & computer

networks . O_,

Models of chemical & 9,
reaction networks ey )

.. (every Markov model with "counter
variables”, small jump distances, "density-
dependent” transition rates)
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Deterministic Approximation

popular tool: make state space continuous and approximate
discrete jumps by continuous flow

=> mean-field approximation

=> fluid analysis

=> reaction rate equations

=> 1st order moment closure
Approximation of the (co-)variances

=> 2nd order moment closure
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Deterministic Approximation

popular tool: make state space continuous and approximate
discrete jumps by continuous flow

=> mean-field approximation

=> fluid analysis

=> reaction rate equations

=> 1st order moment closure
Approximation of the (co-)variances

=> 2nd order moment closure

but: what if discreteness matters???
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Example: Exclusive Switch

X X2
< T T >
X1 or X;
but not both
gene 1 common gene 2

promotor

State variables:
promotor: free | Xi; bound | Xz bound
populations of X; and X
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Example: Exclusive Switch

1 copy of each gene
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Example: Exclusive Switch

1 copy of each gene
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Example: Exclusive Switch
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Example: Exclusive Switch

10 copies of each gene
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Stochastic hybrid approach

e keep small populations discrete stochastic

e make large populations continuous (with
stochastic or deterministic dynamics)




Example: Exclusive Switch

fpromotor- X 7 4 promofor o
\ X1 comp A % F ree '

promo’ror-
Xz complex

discrete state (MODE) changes of the promotor

|0
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Example: Exclusive Switch

bzxz
P/ promofor T

promofor-
Xz complex

discrete state (MODE) changes of the promotor

|0
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Example: Exclusive Switch

e - bzxz
promofor
Y Free i

promofor-
complex/

include updates of

discrete jumps in ODE
if populations are
large => continuous
trajectories

discrete state (MODE) changes of the promotor

|0
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Example: Exclusive Switch

fpromotor- X 7 4 promofor o
\X1 COMPIEX 4, F ree /

promo’ror-
Xz complex
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Example: Exclusive Switch

/promotor- "X , P" omotor e

N\ complexse .\ free

promofor-
Xz complex

ODE
d/d.l' X1=k1-d1X1-b1X1

d/d.l' X2=k2-d sz-b 2X2
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Example: Exclusive Switch

zxz

Promofor-

A2 COMPplex/

\X1 complex 4 ...\ F ree

ODE
d/dt X1=k'1 ~-d X1+

d/df Xzzkz—d2X2+uZ
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Example: Exclusive Switch

zxz

Promofor-

N2 COmplex/

N\ complexse .\ free

ODE
d/d'|' X1=y(1 —d1X1+J41

d/df Xzzkz—d2X2+uZ

one may add ODEs for the (co-)variances ...
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Outlook

e From multistep to hybrid simulation
e Transient numerical solution

e Steady-state solutions and stability
analysis




From Multistep to
Hybrid Simulation




Multistep Simulation

Several techniques for multistep simulation have
been developed in the area of chemical Kinetics

e T-leaping (Gillespie 2001, ...)

e Approximate Simulation (Haseltine and
Rawlings 2002)

e Hybrid Stochastic Simulation (Salis and
Kaznessis 2005)




Multistep Simulation

Several techniques for multistep simulation have
been developed in the area of chemical Kinetics

e T-leaping (Gillespie 2001, ...)

e Approximate Simulation (Haseltine and
Rawlings 2002)

e Hybrid Stochastic Simulation (Salis and
Kaznessis 2005)

For Monte-Carlo simulation discreteness is not a
problem, bu} stiffness is!




Multiscale Problem

For direct numerical simulations (= approximations
of the probability distributions):

=> one may use a stochastic hybrid approach
because

(1) populations are large, keeping variables
discrete is expensive (state space explosion)

(2) model is stiff and simulation is very slow
(step-size of numerical integration is too small)

often we have both!




Stiffness in Enzyme Kinetics
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Multistep simulation

Init t:=t9, X:=Xo0 and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....km for Kjy,...,Kn;
4. Set Tt := T + T and update x as x=x+2viki.
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Multistep simulation

time var system state

Init t:=to, X:=Xo and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....km for Kjy,...,Kn;
4. Set Tt := T + T and update x as x=x+2viki.
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Mul.l.is.l.ep S’rransifion rate of type i

event (which changes the
populations) e.g. chemical
reaction, arrival of a

Init t:=to, x:=xo and tend; |ooee o

while T < Tend

1. Compute all oi(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....Km for Ky,...,Kn;
4. Set t :=t + T and update x as x=x+2viki.
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Multistep simulation

Init t:=to, X:=Xo and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....km for Ky, ..., Km;
4. Set t :=t + T and update x as x=x+2vik.

random var for
number type |
events within

. next T time units
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Multistep simulation

Init t:=t9, X:=Xo0 and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....km for Kjy,...,Kn;
4. Set Tt := T + T and update x ds x=x+2viKi.

realizations
of Ki,...,KR

|7
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Multistep simulation

Init t:=to, X:=Xo and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,....km for Kjy,...,Kn;
4. Set Tt := T + T and update x as x=x+2viki.

change vector of
type | events
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Multistep simulation

Init t:=1o, X:=X0 and tend:

while t < tfend

1. Compute all ai(x) and o(x):=0t(X)+***+0&m(x);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,...,kr for Kj,... Kg;
4. Set Tt := T + T and update x as x=x+2viki.

direct multistepping: use Poisson distribution

(parameter oi(x)T) to estimate k... kz
explicit T-leaping: choose ftime step such that
rates do not change mych (Gillespie 2001)
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Hybrid simulation

Init t:=t9, X:=Xo0 and tend;

while T < Tend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);

2. Choose a step size T according to some
appropriate rule;

3. Compute suitable estimates ki,...,kr for K;,...,Kg;
4. Set Tt := T + T and update x as x=x+2viki.

If the parameter ai(x)T of the Poisson distribution is
large (ai(x)T >> 1), then it tends to a normal distribution
with mean i(x)T and variance oi(x)T (Gillespie 2002).
If we forget about the variance, we just use oi(x)T
=> deferministic approximation
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Hybrid simulation

Init t:=t9, X:=Xo0 and tend;

while T < fend

1. Compute all ai(x) and &X(x):=0t(X)+:**+0m(X);
2. Choose a step size T according to some
appropriate rule;

usually the case if reactant|Ku-..Kr for Ki,...Kg;
populations are large as X=X+2Viki.

If the parameter &i(x)T of the Poisson distribution is
large] (xi(x)T >> 1)) then it tends to a normal distribution
with mean X(XJT and variance oi(x)T (Gillespie 2002).

If we forget about the variance, we just use oi(x)T
=> deferministic approximation
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Stochastic Hybrid Simulation

How long do we stay in a mode until we
change the mode?

mOd, bax2

r omotor- X" bromoto e omotor
\ A ’ & ... 3 X2 COMplex/

) ¥ u 2

for mode A:
exit rate A=y, is independent
of evolution of x; and x:
=> exponential distributed
delay with parameter -u;

20
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Stochastic Hybrid Simulation

How long do we stay in a mode until we
change the mode?

mode B
~ romotor-" prom 01'01"“" - omotor—
free ‘

\ X1 complex4e. ...\ A N X2 cOmplex/

for mode B: exit rate
d/dt xi=ki-dix1+bix; A(s)=b1x1(s)+b2x2(s)
=> delay T such that

P(1 > 1) = exp (— /;H )\(S)dS)

21

d/df X2=k2-d2X2+b2X2
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Stochastic Hybrid Simulation

How long do we stay in a mode until we
change the mode?

A(s)=b1x1(s)+b2x2(s)
but the evolution of xi(s) and xz(s) during [t,t+T] is
apriori not known =>

exploit that for F(t')= P(T>t) !

%F(s) = A\(s)F'(s) "'{)/04
0.2
and F(0) =1




Stochastic Hybrid Simulation

How long do we stay in a mode until we
change the mode?

A(s)=b1x1(s)+b2x2(s)
but the evolution of xi(s) and xz(s) during [t,t+T] is
apriori not known =>

exploit that for F(t')= P(T>t) !

0.8}

0.67

d B uniform
SEE = MR varerm

number U:
and F(0) =1

0




Hybrid simulation

Init t:=t9, X:=Xo0, M:=mp, and tend;

while T < Tend

1. Pick uniformly distributed random number U;

2. Integrate x using ODEs of current mode;
simultaneously integrate F(s) with initial condition F(0)=1;
3. Stopp integration at time T where F(T)=U;

4. Decide for next mode accoring to jump rates of
current mode m;

5. Set t := t+T (and update x according to mode switch)

!

only of discrete jump rates are not part of ODEs

23
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Transient numerical solution

24




Transient numerical solution

Why do we care about numerical solutions if
Monte-Carlo simulation works well?

- compute the whole probability distribution
- compute probabilities of rare events
- calibrate parameters w.r.t. observations

=> force simulation method fo explore
certain interesting parts of the state space
(even if they are unlikely)!

25




PDE of the PDF

single continuous variable:
1

pi(t,x) = ZELI%)P(M()—Z',:E<X(15)<$+A)
/ con’runuous variable
mode i for protein concentration

Gip(e.t) + gp(z OR(x) = p(t.2)Q(x)

see 'Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

26
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PDE of the PDF

single continuous variable:
1

pi(t,x) = ZELI%)P(M()—Z',:E<X(15)<$+A)
/ con’runuous variable
mode i for protein concentration

%p(:c,twa%p(w,t)ﬁ(x) = pt,2)Q(z)

-\
ODE rates of jump rates for
protein dynamics switching modes

see 'Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998
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PDE of the PDF

single continuous variable:
1

pi(t,x) = KEE)P(M()_i’ZE<X(t)<$+A)
/ con’runuous variable
mode i for protein concentration

%p(a;,twa%p(w,t)ﬁ(x) = pt,2)Q(z)

-\
ODE rates of jump rates for
protein dynamics switching modes

see 'Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

Numerical Solution => either discretize continuous
part of state space and integrate PDE or ..
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Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

e large populations -> deterministic/continuous (DC)
dynamics given by ODE (depend on mode)
(also possible with more moments than just 1st)

27




Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

e large populations -> deterministic/continuous (DC)
dynamics given by ODE (depend on mode)
(also possible with more moments than just 1st)

e small populations -> stochastic/discrete (SD)
modes; dynamics
given by (small)
Markov chain

27




Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

o large populations -> deterministic/continuous (DC)
dynamics given by ODE (depend on mode)
(also possible with more moments than just 1st)

e small populations -> stochastic/discrete (SD)
modes; dynamics P

given by (small) ol ,‘ '\ L
Markov chain ¥ f \

200t |
= may switch represen- |
100;

tations over time

] 1
1 |
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1
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How to integrate over time?

mode m., baxP _ me C

d/df X1=Ki1-dix1 -biXi

d/af Xz=k2—d2X2-b2Xz

Given at time t: probabilities pa+ps+pc=1
and conditional expectations xi”*, xi%,xi¢ (i=1,2)
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How to integrate over time?

d/df X1=k1-d1X1 -b1X1
d/af X2=Ko-doX2-boX2

1) integrate probability distribution for small [t,t+h]
pa(t) --> pa(t+h)  ps(t) --> ps(t+h) ...
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How to integrate over time?

mOd m. bax25 moe C

PA; x1%, X ZA.. “{ps:

update depends on

conditional expectation
d/d'|' X1=k1—d1X1— 1 /AT Xi1= -dlxl
d/df X2= -daX» d/df X2=K2-d2X2-uz

1) integrate probability distribution for small [t,t+h]
pa(t) --> pa(t+h)  ps(t) --> ps(t+h) ...




How to integrate over time?

mode m., baxP _ me C

d/df X1=Ki1-dix1 -biXi

d/af Xz=k2—d2X2-b2Xz

2) integrate conditional expect. for small [t,t+h]

A1) --> xA(t+h)  x®(1) --> x®(t+h) ...

Montag, 5. September 2011



How to integrate over time?

mOd m. bax,5 _ me C

d/df X1=Ki1-dix1 -biXi

d/af X2=K2-d2xo-bax2

3) “correct"” condition in xi*(t+h),x8(t+h),xi*(t+h) by
taking into account that state is left during [f,t+h]
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How to integrate over time?

mode m. baxP _ me C

d/df X1=Ki1-dix1 -biXi

d/af X2=K2-d2xo-bax2

Result at t+h: new probabilities pa(t+h),ps(t+h),...
and new conditional expect. Xi*(t+h),xi®(t+h), ...
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How to integrate over time?

1) integrate mode probabilities for h time units

2) integrate conditional expectations of all modes
for h time units

3) correct values obtained in 2) as follows:
E[X(t+h) | in mode A at time t+h] =~

Smode 8 (inflow from B)*(value obtained in 2) for B) /

(total inflow to A)

33




use numerical

HOW 'I'O in'l'egra'l'e approachs developed

for systems with small

lati h
1) integrate mode probabilities Forrrirre wrmrs

2) integrate conditional expectations of all modes
for h time units

3) correct values obtained in 2) as follows:
E[X(t+h) | in mode A at time t+h] =~

Smode 8 (inflow from B)*(value obtained in 2) for B) /
(total inflow to A)

33




How to integrate over time?

1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes

for h time units value obtained under the
. ~ |Jassumption of remaining
3) correct values obtained in Zin mode during [t,t+h)

E[X(t+h) | in mode A at time t+h] =
Smode 8 (inflow from B)*(value obtained in 2) for B) /

(total inflow to A)

33




How to integrate over time?

1) integrate mode probabilities for h time units

2) integrate conditional expectations of all modes
for h time units

3) correct values obtained in 2) as follows:
E[X(t+h) | in mode A at time t+h] =~

Smode 8 (inflow from B)*(value obtained in 2) for B) /

(total inflow to A)

Probability flow from
B to A during [f,t+h)
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Experimental Results

Results for exclusive switch

purley -y
: hybri
discrete Y ODE
-« — < > € >
pset ex. time | Sig| error || pop. thres. ex. time |Sig| | ml | m2 | m3 | ex. time | ml
1 4h 51min | 2-10° | 4-1075 50 25sec | 4-10% | 0.06 | 0.08 | 0.09 Isec | 0.45
100 28sec | 6-10% | 0.06 | 0.07 | 0.09
2 || 2min 21sec | 7-10° | 6-107° 50 18sec | 6-10% | 0.02 | 0.08 | 0.16 Isec | 0.05
100 | 1min 41sec | 4-10%* | 0.01 | 0.05 | 0.12

Use moment-based representation for proteins X,
and Xz when population reaches 50 or 100.

-> SHAVE DEMO

34
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Solving the PDE by discretization
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Solving the PDE by discretization

k¥C
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Aggregation vs. Flow Approximation

assume that cells are
(macro) states of a new
(reduced) Markov chain

assume exponenftial
distribution for jumps
between macro states

true distribution is phase
type => in general variance
increases if number of
phases is reduced to one

=> works only well in
certain cases

safe way:

approximate probability
flow between cells and
numerically integrate PDE

see e.qg. Fokker-Planck
approximation of the
master equation in
molecular biology" by
Sjoberg, Lotstedt, Elf

36
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Steady-state solutions and
stability analysis




~romo’ror-

unblndlng

4 promofor

mdmg
of X;

binding

‘ promo’ror-
A\ X2 complex

- unldlng
of X2

Example: Exclusive Switch

Equilibrium points of mode ODEs:

=
—
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=
N
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do+b2
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Lq

C
Lo

ko+uo

Does this help for locating equilibrium

probabilities of the Markov chain?
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High Binding Rate
equilibrium of mode A and C at (100,0) and (0,100)

-3
Equilibrium Probalsilities
X 10
120

16

. equilibrium
o N steady-state 12 point

probability mass L of mode B:
’ 8 (5,5)
@ - ® _ﬂ

0 20 40 60 80 100 120
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Low Binding Rate
equilibrium of mode A and C at (120,0) and (0,120)

Equilibrium Probakbilities ¥ 1 ﬂ_
120 8 equilibrium point
100 ; of mode B:
) ; (33,33)
5
60 4
10 1
12
20
-
% 20 40 60 80 100 % "

40
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Low Binding Rate
equilibrium of mode A and C at (120,0) and (0,120)

—_ - -4
Equilibrium Probakbilities % 10

B ., equilibrium point
100 7 OF mOde B:
. : (33,33)

Jumps between modes
are not adequately taken
into account!

60
40

20

; ® .
0 20 40 60 80 100 1

40

Montag, 5. September 2011



Asymmetric Binding Rate

equilibrium of mode A and C at (120,0) and (0,100)
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- 4 0.005

0

equilibrium
of mode B:
(5,0.5)

Jumps between
modes are not
adequately taken into
account!
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Stability Analysis

In order to decide whether a system is
multistable and where the attractors are
located:

in general equilibrium points of modes are
not enough information

one has to compute/approximate the
steady-state probability density

42




Steady-state probability density

SPD) + p(a,)R(z) = plt,2)Q(x)

Problem: no initial conditions are known

=> find values of x where density is zero!

=> solve PDE w.r.t. these side conditions
(derivation of side condtions is still and open
problem)

=> dlternatively, run the system transiently until
convergence of distribution
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Conclusions

e for many systems, a hybrid approach is the right
way to go (switch variables!)

e fluidization of large populations gives huge
computational benefits (both for Monte-Carlo and
numerical simulations)

e Efficient approaches for stability analysis are still
missing

e Efficient approaches for parameter estimation are
still missing

44
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