Model Checking is Static Analysis

Flemming Nielson, DTU Informatics

Problems versus Algorithms

» How are the problems of Model Checking and Static
Analysis related to each other?

From Static Analysis to Model Checking: the previous talk
From Model Checking to Static Analysis: this talk

» How are the iterative algorithms of Model Checking and
Static Analysis related to each other?

» How are the abstraction techniques of Model Checking
and Static Analysis related to each other?

Current Results

Model Checking is Static Analysis

ACTL Model Checking is Static Analysis

-~

Labeled Transition

)/

_

System

A=(5,4,—)
+

ACTL formula ©

ACTL Model
Checking

/

Flow Logic
approach

-

Flemming Nielson, Hanne Riis Nielson @ Fossacs 2010

Equivalent

7

H{SES|A,SI=(D} J
N

-

-

P(Re) in the least model
such that p sat (R - @)

~

J

CTL Model Checking is Static Analysis

-

N

M=(5TL)

-4

CTL formula ©

Kripke Structure

CTL Model
Checking

/

Flow Logic
approach

-

{s€S|AsE=D]}

PN

Equivalent

7

-

-

P(Re) in the least model
such that p sat (R - @)

~

J

Flemming Nielson, Hanne Riis Nielson, Piotr Filipiuk, Fuyuan Zhang @ unpublished

Alternation-free v -calculus
Model Checking is Static Analysis

-

M=(5TL)

-4

alternation-free

\formula)

~

Kripke Structure

modal u-calculus

Model Checking

for y-calculus

/

Flow Logic
approach

-

(e

PN

Equivalent

7

-

-

P(Re) in the least model
such that p sat (R - @)

~

J

Fuyuan Zhang, Flemming Nielson @ unpublished

Model Checking for ACTL

Model Checking is Static Analysis

Labelled Transition Systems

A labelled transition system (LTS) has the form (S, A, —) where
@ S is a non-empty set of states,
@ A is a non-empty set of actions and

@ —-C S x A xS is the transition relation.

We write s —? s’ whenever (s,a,s’) € —.

A path 7 is a maximal sequence (s; —7 sjt1)o<i<n such that s; —% s
for all i > 0 and where n € {0,--- , 00} is the length of the path.

Action Computation Tree Logic

We shall use a variant of the modal logic Action Computation Tree Logic
(ACTL) to express properties of paths in labelled transition systems:

¢ = true| false | bp
G1A G2 | 01V G2 | 20 | d1 = &2
EXq ¢ | AXq ¢ (2 A)
E[¢01 oUq, 2] | Alé1 oUq, ¢2] (2i C A)
bp = --- (basic predicates)
@ EX - exists next step e E[- U ‘|: exists path until

o AX -: forall next steps e A[- U ‘]: forall paths until

Interpretation of ACTL

The interpretation s = ¢ is defined relative to the state s:

s = true iff true

s = false iff false

skE=bp iff bpholdsins
sE¢1 NGy iff (sk=d1) A (s)
sEoVay iff (sk=ao1)V(sk)

sk i (s o)
sEg1=¢2 iff (skE=d1)= (s)

Interpretation of ACTL

SO'ZEXQ¢
so = AXq ¢

so = E[¢1 ,Uq, ¢2]

50): A[¢1 Q1U92 ¢2]

iff

iff

iff

iff

3(si —7 si+1)o<i<n :
n>0ANap€eQAs =¢

V(si —% sit1)o<i<n :
n>0ANa€QAs |=¢

3(5,' — i 5i—|—1)0§i<n cdk < n:
[A0§i<k(ai € Asiy1 = 01)A
(ak € Q2 A spi1 | 02)]

V(si —¥ sit1)o<i<n: 3k < n:

[/\ogi<k(3i € N1 Asip1 = o1)A
(ak € Q2 A skq1 = 02)]

An Example

Let “goal” be the predicate that is

Transition system: only satisfied in the state 3.
¢ {s|s=¢}
B B EX 4 goal {2,3}
@ A =@ AX 4 goal {3}
/ E[true 4U 4 goal] | {1,2,3}
Altrue 4U 4 goall {3}
D&)’) AG 4 goal {3}
AG/c goal {1,2,3}

Static Analysis using Flow Logic

Model Checking is Static Analysis

Flow Logic

Flow Logic bridges the gap between a number of approaches to static
analysis including Data Flow Analysis, Constraint Based Analysis, Abstract

Interpretation and Type and Effect Systems.

In Flow Logic logical judgements are used to specify when the analysis
information correctly captures the information of the program or system.

The correctness of the analysis is established as a subject reduction result;
we usually do not have precision.

To ensure that the analysis is implementable it is customary to establish a
Moore family, or model intersection property.

The Succinct Solver often suffices for producing polynomial time
implementations. - —

Alternation-iree Least Fixed Point Logic

The Moore family result guarantees the existence of best analysis results
but in itself it does not provide any mechanism for constructing the
analysis result.

Alternation-free Least Fixed Point Logic is a generalisation of Datalog:

values: v = c|x|f(v,..., Vi)
preconditions: pre = R(vi,...,v)|-R(v1,...,vk)
| prey A prey | prey V pre;
| Vx:pre|dx: pre
clauses: cl

|
X
~~
<
[
~
e
—t
-~
-
(D
)
-
[
>
)
~
N

pre = cl | Vx : cl

Interpretation of ALFP

Satisfaction (o, o) sat c/ is defined relative to a universe U; here o an
interpretation of relations and o is an interpretation of variables.

For preconditions:

(o.

9,

(
(
(
(

(o.

& B

9,

Q

Q

Q

Q

Q

)
)
)
)
)

7)

‘ n
5}
(s

)]
Q)
(s

n
o
(s

n
Q
(s

R(vq,...,vk)
-R(v1,..., Vk)
preq /\ pré,
preq V pré,

Vx : pre

dx : pre

iff
iff
iff
iff
iff
iff

(o(vy),...,0(v)) €
(o(vi), - o(wi)) &
(0,0) sat pre; and (o, o) sat pre,
(¢,0) sat pre; or (0,0) sat pre,

(0

,o[x +— al]) sat pre
forall a e U

(0, ofx — a]) sat pre
for some a e U

Interpretation of ALFP

For clauses:
(0,0) sat R(vi,...,vx) iff (o(wv1),...,0(v)) € o(R)
(0,0) sat true iff true
(0,0) sat cli A cly iff (o0,0) sat c/1 and (o,0) sat cly
(0,0) sat pre = cl iff (o,0) sat ¢l
whenever (g, o) sat pre
(0,0) sat Vx:cl iff (o,0[x — a]) sat cl

forallael

Stratification

A clause cl is stratified if there is a number r, an assignment of numbers
called ranks rankg € {0,--- , r} to each relation R, and a way to write c/
on the form A,-;-, cli such that the following holds for all clauses:

@ if cl; contains a definition of R then rankg > I;
@ if cl; contains a positive use of R then rankg < /; and

@ if cl; contains a negative use of R then rankg < /.

Stratification induces a lexicographic order that is also a partial order.

Theorem [Nielson,Nielson,Seidl]

The set {0 | (0,00) sat cl} is a Moore family whenever ¢/ is closed and
stratified:
the greatest lower bound M{o | (0,00) sat c/} is the least model of cl.

The Encoding

Model Checking is Static Analysis

Encoding ACTL in ALFP

For each formula ¢ of ACTL we define a relation R, (of ALFP) containing
those states where the formula ¢ holds (and perhaps more); the analysis
judgements R = ¢ (in ALFP) defines the relation.

|dea:
s = ¢ holds (for ACTL) whenever R4(s) holds in the least model

satisfying R+ ¢ (for ALFP).

We assume:

e for each basic predicate bp we have a relation Pp, on states,
@ for each subset €2 of A we have a relation {2 on actions, and

@ the transition system is presented by a ternary relation T. -

The non-modal operators

R true® iff [Vs: Riyet(s)]
R I false! iff true
R b bpt iff [Vs: Pbp(s) = Rppe(5)]

RE (o v o) iff REGEARFE G2 A
[Vs : R¢;zl (s) Vv Rd)gz (s) = R(¢flv¢§2)e(5)]
RE (m¢")t iff RE " A
[Vs 1 (= Ry (s)) = Ri_perye(s)]

RE (o = o) iff REQLARFE G2 A

[Vs : = R¢f1 (s) Vv R¢€2(s) = R(4> ez)e(s)]

The next modalities

Rt (EXqo")! iff RE¢" A
[Vs:[Fa:3s": T(s,a,s") AQ(a) A Ry (s')]

= Riexq o) (5)]

RE (AXq o) iff RE¢" A
[Vs: [Va:Vs': —=T(s,a,s")V
(€2(a) A Ryer ()] A
Ha:3s": T(s,a,s)]
= Riaxq ¢¢ye(S)]

Note that we step outside the Datalog fragment and use all of stratified ALFP.

The until modalities

R (Aléy oo, ¢71)" iff R0 AR Y A
Vs: [[Fa:3s: T(s,a,s)|A
Va:Vs': —=T(s,a,s)V
2(2) A Ryes(5)]V
[Q1(a) A R¢e1 (s")A
1

/
Raie o uq, ¢2pye (S]]

= Riapst o,uq, 621y (%)

The formula for E is slightly simpler.

Achieving Stratification

We shall require that all sub-formula of an ACTL formula are annotated
with their number in a post-order traversal of the formula.

To be specific we shall say that a formula ¢ is (i, j)-annotated for positive
integers / and j if the lowest annotation occurring within ¢ is i and the
highest is j — the annotation of the formula ¢ itself will then be j.

Theorem

The ALFP clauses generated above from an (1, ¢)-annotated ACTL
formula ¢ is closed and stratified.

A closed and stratified (/,j)-annotated formula is called an (i,j)-stratified
formula.

Correctness and Precision

Theorem

Consider an (i, j)-stratified formulae @ in ACTL and the least model o of
R F ¢ such that p 2 pg. We then have:

o Correctness of o: if s |= ¢/ then o(Ry)(s).
o Precision of g: if o(Ry)(s) then s = ¢/.

Correctness is the usual result established for static analyses; precision only
hold for analyses “close to the semantics” like the Collecting Semantics of
Abstract Interpretation.

Corollary

The implementation of the static analysis by means of the Succinct Solver
constitutes a model checker for ACTL!

v

The Computational Complexity

Model Checking is Static Analysis

Succinct Solver: Complexity

The Succinct Solver is a software tool that computes the least model
guaranteed by the Moore family theorem for ALFP.

The worst case time complexity is given by:

Theorem [Nielson,Nielson,Seidl]

Under the assumptions of the previous theorem the least model
M{o | (0,00) sat ¢/ A o C 0} is computable in time

O(leo| + [t |cll)

where |go| is the size of g and || is the size of the (necessarily finite)
universe 4 and K is the maximal nesting depth of quantifiers within c/.

Succinct Solver: Technology

The Succinct Solver often exhibits a running time substantially lower than
the worst case time complexity.

@ It is programmed in OCAML (or Standard ML).

@ It deals with stratification by computing the relations in increasing
order on their rank.

@ It combines the top-down solving approach of Le Charlier and van
Hentenryck with the propagation of differences (distributive
frameworks, deductive databases, reduction of strength
transformations).

@ Disciplined use of continuations and memoisation as well as arbitrarily
branching prefix trees as a universal data-structure for storing
relations and for organising sets of waiting consumers.

Complexity of Model Checking

Consider a transition system (S,.A, —) where the state space S has size
|S| and the transition relation — has size | T| and consider an ACTL
formula ¢ of size ||

The ALFP clause R I ¢ has size O(|#|) and nesting depth 3 and the worst
case time complexity is

O(T| + Y |Pepl + 241 + [S]P|g))
bp

When the number of base predicates and the number of actions is
bounded by some constant then a more refined reasoning gives

O T+ 15 el)

This equals the worst case complexity for model checking ACTL. MT-LAB

The Conclusion

Model Checking is Static Analysis

The Conclusion

» How are the problems of Model Checking and Static
Analysis related to each other?

» From Model Checking to Static Analysis:
» CTL-type logics can be encoded

» Alternation-free modal t—calculus can be encoded

» The borderline is not yet clear — full modal p—calculus may invalidate
the Moore Family approach ?

» From Static Analysis to Model Checking:
Some static analysis problems can be encoded — but which ones?

The Conclusion

» How are the iterative algorithms of Model Checking and
Static Analysis related to each other?

» How are the abstraction techniques of Model Checking
and Static Analysis related to each other?

» The thesis of Theme | of MT-LAB (a VKR Centre of
Excellence) is:

Static analysis and model checking fundamentally solve the
same problem — but using a different repertoire of techniques

that must be combined in order to produce more powerful
analysis techniques.

