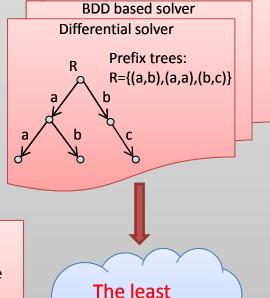

Model Checking is Static Analysis

Fuyuan Zhang <fuzh@imm.dtu.dk> Piotr Filipiuk <pifi@imm.dtu.dk> Language Based Technology, DTU Informatics


Model Checking

- Starting from the initial model, Succinct Solver calculates the least model of ALFP constraints
- The existence of least model is guaranteed by Moore Family property of ALFP formulas
- In the case of Model Checking, the least model equals the solution of model checking

Transition systems

- Transition systems and temporal logic formulas are encoded in ALFP.
- Transition relations and labeling information are defined in the initial model.
- For each subformula of the given temporal logic formula, we create a relation approximating the set of states that satisfy the subformula.
- The constraints of these relations are specified by ALFP formulas and matches the semantics of temporal logic

model for

ALFP

constraints

Static Analysis

π-calculus λ -calculus WHILE language

Reaching Definitions:

init(1) & flow(1,2) & ... & gen(1,x,1) & gen(4,y,4) &... & kill(1,x,?) & kill(1,x,1) & ... & <RD specification>

WHILE programs

[x:=1]¹; while [x<10]² do [x:=x+1]³; [y:=x+2]⁴;

- Control Flow Graph and transfer functions are encoded in ALFP.
- The Reaching Definitions constraints are specified by ALFP clauses.
- We create a relation that for each program point approximates the possible place where a given variable may have been last assigned at (e.g. rd(2,x,1) means that at label 2 variable x, was last assigned at label 1).