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PLAN

• RWL and Maude

• Reasoning about Time: RealTime Maude

• Probablistic modeling:  PMaude

• XTune

2



What is Rewriting Logic
• A logic for executable specification and analysis 

of concurrent, distributed and/or mobile systems

• A logic to specify other logics or languages

• An extension of equational logic with local 
rewrite rules expressing 

• concurrent change over time

• inference rules
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Rewrite Theories 
• Rewrite theory:  (Signature, RewriteRules)

• Signature: (Sorts, Ops, Equations) -- an 
equational theory describing system state

• Rewrite rule:   label:  t => t’  if cond

• Rewriting operates modulo equations

• Generates computations / deductions
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Deduction Rules

reflexivity: replacement:
congruence:

f f

one step rewrite:

closed under

5



Maude
                     http://maude.cs.uiuc.edu

• Maude is a language and tool based on RWL

• High performance rewriting modulo axioms

• Modularity, builtins, reflection

• Execution, search, model checking
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Petri Net Model of a Vending Machine

Buy-c Buy-a change

c a q

$
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mod VENDING-MACHINE is
  sorts Coin Item Place Marking .
  subsorts Coin Item < Place < Marking .
  op null : -> Marking . 
               *** empty marking
  ops $ q : -> Coin .
  ops a c : -> Item .
  op _ _ : Marking Marking -> Marking
           [assoc comm id: null] .  
           *** multiset
  rl[buy-c]: $ => c .
  rl[buy-a]: $ => a q .
  rl[change]: q q q q => $ .
endm
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Execution and search
What is one way to use 3 $s?

Maude> rew $ $ $ .
result Marking: q a c c

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q q c

Solution 2 (state 9)
M:Marking --> q q q a

No more solutions.
states: 10  rewrites: 12)

How can I get 2 apples with 3 $s?
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Model checking
Starting with 5 $s,  can we get 6 apples without 
accumulating more than 4 quarters?
eq vm(M) |= nApples(n) = countPlace(M,a) == n .
eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .

Maude> red modelCheck(vm($ $ $ $ $),
               []~(lte4Q U nApples(6)) .
result ModelCheckResult: counterexample(...)

Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true

Is value conserved?
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Real Time Rewrite 
Theories

&
RealTime Maude
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Real Time Rewrite Theory (RTRwT)

• RT = ((S,O), E, R, φ, τ)

• (((S,O),E),R) is an ordinary Rewrite Theory
• φ interprets a abstract notion of time
• τ maps rules to terms of sort Time
• τ(l) > 0 -- a tick rule, 
• τ(l) = 0 -- instantaneous rule

• R -- l: t => t’ in time τ(l) if cond 
• Computations/derivations: RT |= t -r-> t’ 
• each step instantiates rule, picks a time
• r is the sum of the times of individual steps
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Clock example
R, R’ range over Time,   τrunning = R' ...

crl[running]:  

   {clock(R)} => {clock(R + R')} in time R'  if R' <= 24 monus R

rl[reset]: {clock(24)} => {clock(0)} 

rl[batterydies]:  {clock(24)} => {stopped-clock(24)}  

rl[stopped]: 

    {stopped-clock(R)} => {stopped-clock(R + R')} in time R'
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Analysis
• Property logic:  rtLTL

• propositional LTL without Next

• propositions may refer to time

• Analyses [possibly time bounded]

• execution 

• search

• model checking
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Sampling
To execute, a strategy is needed to pick times

• Transform RT to RTmaxDef(r)  (mte sampling)

• time picked is max allowed by rule condition

• r is used for the max for unbounded rules

Completeness for mte sampling

              RT, t0 |= Φ  iff  RTmaxDef(r), t0 |= Φ 

if RT is time-robust, atoms of Φ are tick-invariant
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RealTime Maude
http://www.ifi.uio.no/RealTimeMaude

tick rule form:   conf => delta(conf,R’) in time R’ if R’ ≤ mte(conf)

Clock ticks:

crl[running]:  {clock(R)} => {clock(R + R')} in time R' if R' <= 24 monus R

 rl[stopped]:  {stopped-clock(R)} => {clock(R + R')} in time R' 

For running and stopped: delta({clock(R)},R’) = {clock(R + R')}
For running: mte({clock(R)} = 24 monus R
For stopped: mte({clock(R)} = INF

There are simple conditions on delta and mte that guarantee time-robustness
Frequently properties are tick-invariant because they don’t mention variables/
attributes changed by delta.
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Clock analyses
(tsearch [1] {clock(0)} =>* {clock(X:Time)} 
                   such that X:Time > 24 in time <= 99 .) 

eq {stopped-clock(R)} |= clock-dead = true . 
eq {clock(R)} |= clock-is(R’) = (R == R’) . 
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) . 

(mc {clock(0)} |=t clockEqualsTime U 
              (clock-is(24) \/ clock-dead) in time <= 1000 .) 
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Example analyses
• AER/NCA suite of protocols for reliable, scalable, and TCP-

friendly multicast in active networks -- correctness, 
performance (worst case times).

• OGDC (Optimal Geographical Density Control)  wireless 
sensor network algorithm for picking active nodes

• Always reach stable/sensing state

• bound on time to stable state,  coverage

• Wide-mouth frog key sharing -- search for matching 
connections, attacks
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Probabilistic Rewriting 
&

Maude
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Probablistic Rewrite Theory

• PR = ((S,O),E, R, π)

• ((S,O),E, R) is a rewrite theory

• π maps rules to probability distribution functions

• prl l : t(x) => t’(x,y) if C(x,y) with probability y := πl(x)

• Probablistic Rewriting Temporal Logic

• Pq #p φ   --  q in {∀,∃}, # in {≤,≥,<,>}

• probability that φ holds on all/some paths is # p 
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Expressiveness

PNS
GSMP 20



PMaude
prl:  clock(t,c) ⇒
  if B then clock(t+1, c - c/1000 ) else broken(t, c - c/1000 ) fi
    with probability B := BERNOULLI(c/1000) . 

crl:  clock(t,c) ⇒
  if B then clock(t+1, c - c/1000 ) else broken(t, c - c/1000 ) fi
    if B := float(random(seed)/maxRand) < c/1000) . 
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Analysis methods

• testing -- Monte Carlo simulation

• statistical model checking -- Vesta tool

• CSL properties

• statistical qualitative analysis:  Quatex language

• E[term] with error bound, confidence
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Analyzing TCP/IP SYN Attack
• Problem:  attacker fills syn-queue

• Counter measure -- only check fraction p of syn’s 
(client must sent multiple requests)

• Analysis: (for different p )

• expected number of (of 100) clients that 
successfully connect 

• probablility that client connects within time t of 
initiating a request

• probablility of successfull attack ≤ .01
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Statistical MC
• Cache size =10,000

• timeout = 10 seconds

• number of valid senders = 100
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Quatex Analysis

Expected number of clients out of 100 clients that get 
connected with the server under DoS attack
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XTune
Cross layer adaptive tuning
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Middleware 

Applications 

Hardware 

OS 

Cross Layer 

Adaptation 

Formal Executable Specification

System Specification: 

layered modeling with 

cross-layer adaptation

Observer/Property Checker:

extract properties/values from 

executable specification

Controller

Formal Verification

System Realization

Pre-testing

Model Learning

Policy/Parameter Selection

Monitoring & Analysis

Device Module:

hardware features

Environment Module:

mobility, network status

Task/OS Module:

application, scheduling

Control

(i.e., selected 

policy/parameter)

Control

(i.e., selected 

policy/parameter)

Observables

(i.e., properties,

values)

Simulated execution

(i.e., dynamic system

execution behavior)

feedback

control

A.

B.

C.
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XTune approach

• System components/layers modeled as objects

• Rules mix time and probability

• combine ideas of RTMaude and PMaude

• Analysis simplifies/improves ideas of PMaude
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Example: Mobile Multimedia

Control Task 

Dataflow 

Scheduling Control 

Parameter Delivery 

Video Phone Mode 

Camera 

Mic. 

H.263 

Encoder 

Speaker 

Display 
H.263 

Decoder 

G.723 

Decoder 
G.723 

Encoder 

Mux Demux Network 

Speaker 

Display 
H.263 

Decoder 

MP3 

Decoder 

AVI 

Reader 

VOD Player Mode MP3 Player Mode 

Speaker 
MP3 

Decoder 

File 

Reader 

Multi-mode Multimedia Terminal System 

User 

Interface 

FSM 

Control 

Connection 

Handling 

Video 

Phone 

VOD 

Player 

MP3 

Player 

Email 

Client 
SMS 
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XTune model of video phone
System state -- a clocked configuration

{ < CPU: HW | Timer : 0, policy : P,  consumedEnergy : 0.0, ... >
  < pbpair: Application | Timer: 0, accEncTime : 0, consecutiveMiss : 0,  ... >
  < Mobility : NetworkMonitor | Timer : 0, pos : L,  speed : 1, ... > 
  < ZoneInfo : Zone | currentDLY : dly, currentPLR : alpha ... > 
  < Random : RandomNGen | seed : N > 
  ... } in time 999999 .

crl [tick]: {conf} in time T => {delta(conf, T’)} in time (T monus T') 
    if T' := mte(conf) /\ T gt T' /\ T' gt 0 .

Application execution times, packet arrival times ... sampled from 
normal and exponential distributions.
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Experiments: Statistical MC
Quick detection of problematic situations (e.g., battery expires)
Sequential testing 

Property [probability (battery expires) < 0.1]
Parameters

alpha (false negative) = 0.05, beta (false positive) = 0.05
theta (threshold) = 0.1 , delta (indifference region) = 0.01

133 traces give H1 accept
Black-box testing also confirms the formula                          
with error of 8.20E-7 with same traces.
Performance 

The run time for each statistical model checking is 10-20 msecs           
 in addition to the sample generation
a feasible proposition for the on-the-fly adaptation
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Experiments: Statistical Analysis

(b) The first normality (JB) test fails  need more samples 
(c) The confidence interval from initial samples is greater than the desired interval 
     => need more samples
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Summary
• Quantitative analysis in Maude is done by

• extending basic rewriting with time and 
probablilities (a built in random number generator)

• mapping special syntax to core Maude

• execution, search, and various forms of model 
checking / statistical analysis
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