
Quantitative Modeling
in

Maude
Carolyn Talcott

SRI International
MQLA 2009

1

PLAN

• RWL and Maude

• Reasoning about Time: RealTime Maude

• Probablistic modeling: PMaude

• XTune

2

What is Rewriting Logic
• A logic for executable specification and analysis

of concurrent, distributed and/or mobile systems

• A logic to specify other logics or languages

• An extension of equational logic with local
rewrite rules expressing

• concurrent change over time

• inference rules

3

Rewrite Theories
• Rewrite theory: (Signature, RewriteRules)

• Signature: (Sorts, Ops, Equations) -- an
equational theory describing system state

• Rewrite rule: label: t => t’ if cond

• Rewriting operates modulo equations

• Generates computations / deductions

4

Deduction Rules

reflexivity: replacement:
congruence:

f f

one step rewrite:

closed under

5

Maude
 http://maude.cs.uiuc.edu

• Maude is a language and tool based on RWL

• High performance rewriting modulo axioms

• Modularity, builtins, reflection

• Execution, search, model checking

6

Petri Net Model of a Vending Machine

Buy-c Buy-a change

c a q

$

4

mod VENDING-MACHINE is
 sorts Coin Item Place Marking .
 subsorts Coin Item < Place < Marking .
 op null : -> Marking .
 *** empty marking
 ops $ q : -> Coin .
 ops a c : -> Item .
 op _ _ : Marking Marking -> Marking
 [assoc comm id: null] .
 *** multiset
 rl[buy-c]: $ => c .
 rl[buy-a]: $ => a q .
 rl[change]: q q q q => $.
endm

7

Execution and search
What is one way to use 3 $s?

Maude> rew $ $ $.
result Marking: q a c c

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q q c

Solution 2 (state 9)
M:Marking --> q q q a

No more solutions.
states: 10 rewrites: 12)

How can I get 2 apples with 3 $s?

8

Model checking
Starting with 5 $s, can we get 6 apples without
accumulating more than 4 quarters?
eq vm(M) |= nApples(n) = countPlace(M,a) == n .
eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .

Maude> red modelCheck(vm($ $ $ $ $),
 []~(lte4Q U nApples(6)) .
result ModelCheckResult: counterexample(...)

Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true

Is value conserved?

9

Real Time Rewrite
Theories

&
RealTime Maude

10

Real Time Rewrite Theory (RTRwT)

• RT = ((S,O), E, R, φ, τ)

• (((S,O),E),R) is an ordinary Rewrite Theory
• φ interprets a abstract notion of time
• τ maps rules to terms of sort Time
• τ(l) > 0 -- a tick rule,
• τ(l) = 0 -- instantaneous rule

• R -- l: t => t’ in time τ(l) if cond
• Computations/derivations: RT |= t -r-> t’
• each step instantiates rule, picks a time
• r is the sum of the times of individual steps

11

Clock example
R, R’ range over Time, τrunning = R' ...

crl[running]:

 {clock(R)} => {clock(R + R')} in time R' if R' <= 24 monus R

rl[reset]: {clock(24)} => {clock(0)}

rl[batterydies]: {clock(24)} => {stopped-clock(24)}

rl[stopped]:

 {stopped-clock(R)} => {stopped-clock(R + R')} in time R'

12

Analysis
• Property logic: rtLTL

• propositional LTL without Next

• propositions may refer to time

• Analyses [possibly time bounded]

• execution

• search

• model checking

13

Sampling
To execute, a strategy is needed to pick times

• Transform RT to RTmaxDef(r) (mte sampling)

• time picked is max allowed by rule condition

• r is used for the max for unbounded rules

Completeness for mte sampling

 RT, t0 |= Φ iff RTmaxDef(r), t0 |= Φ

if RT is time-robust, atoms of Φ are tick-invariant

14

RealTime Maude
http://www.ifi.uio.no/RealTimeMaude

tick rule form: conf => delta(conf,R’) in time R’ if R’ ≤ mte(conf)

Clock ticks:

crl[running]: {clock(R)} => {clock(R + R')} in time R' if R' <= 24 monus R

 rl[stopped]: {stopped-clock(R)} => {clock(R + R')} in time R'

For running and stopped: delta({clock(R)},R’) = {clock(R + R')}
For running: mte({clock(R)} = 24 monus R
For stopped: mte({clock(R)} = INF

There are simple conditions on delta and mte that guarantee time-robustness
Frequently properties are tick-invariant because they don’t mention variables/
attributes changed by delta.

15

Clock analyses
(tsearch [1] {clock(0)} =>* {clock(X:Time)}
 such that X:Time > 24 in time <= 99 .)

eq {stopped-clock(R)} |= clock-dead = true .
eq {clock(R)} |= clock-is(R’) = (R == R’) .
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

(mc {clock(0)} |=t clockEqualsTime U
 (clock-is(24) \/ clock-dead) in time <= 1000 .)

16

Example analyses
• AER/NCA suite of protocols for reliable, scalable, and TCP-

friendly multicast in active networks -- correctness,
performance (worst case times).

• OGDC (Optimal Geographical Density Control) wireless
sensor network algorithm for picking active nodes

• Always reach stable/sensing state

• bound on time to stable state, coverage

• Wide-mouth frog key sharing -- search for matching
connections, attacks

17

Probabilistic Rewriting
&

Maude

18

Probablistic Rewrite Theory

• PR = ((S,O),E, R, π)

• ((S,O),E, R) is a rewrite theory

• π maps rules to probability distribution functions

• prl l : t(x) => t’(x,y) if C(x,y) with probability y := πl(x)

• Probablistic Rewriting Temporal Logic

• Pq #p φ -- q in {∀,∃}, # in {≤,≥,<,>}

• probability that φ holds on all/some paths is # p

19

Expressiveness

PNS
GSMP 20

PMaude
prl: clock(t,c) ⇒
 if B then clock(t+1, c - c/1000) else broken(t, c - c/1000) fi
 with probability B := BERNOULLI(c/1000) .

crl: clock(t,c) ⇒
 if B then clock(t+1, c - c/1000) else broken(t, c - c/1000) fi
 if B := float(random(seed)/maxRand) < c/1000) .

21

Analysis methods

• testing -- Monte Carlo simulation

• statistical model checking -- Vesta tool

• CSL properties

• statistical qualitative analysis: Quatex language

• E[term] with error bound, confidence

22

Analyzing TCP/IP SYN Attack
• Problem: attacker fills syn-queue

• Counter measure -- only check fraction p of syn’s
(client must sent multiple requests)

• Analysis: (for different p)

• expected number of (of 100) clients that
successfully connect

• probablility that client connects within time t of
initiating a request

• probablility of successfull attack ≤ .01

23

Statistical MC
• Cache size =10,000

• timeout = 10 seconds

• number of valid senders = 100

24

Quatex Analysis

Expected number of clients out of 100 clients that get
connected with the server under DoS attack

25

XTune
Cross layer adaptive tuning

26

Middleware

Applications

Hardware

OS

Cross Layer

Adaptation

Formal Executable Specification

System Specification:

layered modeling with

cross-layer adaptation

Observer/Property Checker:

extract properties/values from

executable specification

Controller

Formal Verification

System Realization

Pre-testing

Model Learning

Policy/Parameter Selection

Monitoring & Analysis

Device Module:

hardware features

Environment Module:

mobility, network status

Task/OS Module:

application, scheduling

Control

(i.e., selected

policy/parameter)

Control

(i.e., selected

policy/parameter)

Observables

(i.e., properties,

values)

Simulated execution

(i.e., dynamic system

execution behavior)

feedback

control

A.

B.

C.

27

XTune approach

• System components/layers modeled as objects

• Rules mix time and probability

• combine ideas of RTMaude and PMaude

• Analysis simplifies/improves ideas of PMaude

28

Example: Mobile Multimedia

Control Task

Dataflow

Scheduling Control

Parameter Delivery

Video Phone Mode

Camera

Mic.

H.263

Encoder

Speaker

Display
H.263

Decoder

G.723

Decoder
G.723

Encoder

Mux Demux Network

Speaker

Display
H.263

Decoder

MP3

Decoder

AVI

Reader

VOD Player Mode MP3 Player Mode

Speaker
MP3

Decoder

File

Reader

Multi-mode Multimedia Terminal System

User

Interface

FSM

Control

Connection

Handling

Video

Phone

VOD

Player

MP3

Player

Email

Client
SMS

29

XTune model of video phone
System state -- a clocked configuration

{ < CPU: HW | Timer : 0, policy : P, consumedEnergy : 0.0, ... >
 < pbpair: Application | Timer: 0, accEncTime : 0, consecutiveMiss : 0, ... >
 < Mobility : NetworkMonitor | Timer : 0, pos : L, speed : 1, ... >
 < ZoneInfo : Zone | currentDLY : dly, currentPLR : alpha ... >
 < Random : RandomNGen | seed : N >
 ... } in time 999999 .

crl [tick]: {conf} in time T => {delta(conf, T’)} in time (T monus T')
 if T' := mte(conf) /\ T gt T' /\ T' gt 0 .

Application execution times, packet arrival times ... sampled from
normal and exponential distributions.

30

Experiments: Statistical MC
Quick detection of problematic situations (e.g., battery expires)
Sequential testing

Property [probability (battery expires) < 0.1]
Parameters

alpha (false negative) = 0.05, beta (false positive) = 0.05
theta (threshold) = 0.1 , delta (indifference region) = 0.01

133 traces give H1 accept
Black-box testing also confirms the formula
with error of 8.20E-7 with same traces.
Performance

The run time for each statistical model checking is 10-20 msecs
 in addition to the sample generation
a feasible proposition for the on-the-fly adaptation

31

Experiments: Statistical Analysis

(b) The first normality (JB) test fails need more samples
(c) The confidence interval from initial samples is greater than the desired interval
 => need more samples

32

Summary
• Quantitative analysis in Maude is done by

• extending basic rewriting with time and
probablilities (a built in random number generator)

• mapping special syntax to core Maude

• execution, search, and various forms of model
checking / statistical analysis

33

References
Maude

M. Clavel, F. Duran, S. Eker, J. Meseguer, P. Lincoln, N. Martı-Oliet, and C. Talcott. All
About Maude – A High-Performance Logical Framework. Springer LNCS Vol. 4350,
2007.

RTMaude

P. C. Olveczky and J. Meseguer. Abstraction and completeness for RealTime Maude.
In WRLA 2006, pages 128–153.

P. C. Olveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the AER/
NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design, 29(3):253–293, 2006.

P. C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. In IPDPS 2006.

P. C. Olveczky and M. Grimeland. Formal Analysis of Time-Dependent
Cryptographic Protocols in Real-Time Maude. In IPDPS 2007.

34

References
PMaude

Koushik Sen, Nirman Kumar, José Meseguer and Gul Agha. Probabilistic
Rewrite Theories: Unifying Models, Logics and Tools. Technical Report
UIUCDCS-R-2003-2347, UIUC, May 2003.

Gul Agha, Michael Greenwald, Carl Gunter, Sanjeev Khanna, Jose Meseguer,
Koushik Sen, and Prasanna Thati. Formal Modeling and Analysis of DoS Using
Probabilistic Rewrite Theories. In FCS 2005.

XTUNE

M. Kim, M.-O. Stehr, C. Talcott, N. Dutt, and N. Venkatasubramanian. A
probabilistic formal analysis approach to cross layer optimization in distributed
embedded systems. In FMOODS 2007, LNCS, vol. 4468, pp. 285–300.

35

