Quantitative Modeling
In
Maude

Carolyn Talcott
SRI International

MQLA 2009

PLAN

RWL and Maude

Reasoning about Time: RealTime Maude

Probablistic modeling: PMaude
XTune

® A |ogic for executable specification and analysis
of concurrent, distributed and/or mobile systems

® A logic to specify other logics or languages

® An extension of equational logic with local
rewrite rules expressing

® concurrent change over time

® inference rules

Rewrite theory: (Signature, RewriteRules)

Signature: (Sorts, Ops, Equations) -- an
equational theory describing system state

Rewrite rule: label: t =>1t if cond

Rewriting operates modulo equations

Generates computations / deductions

Deduction Rules

ohe step rewrite: A —»A

closed under

reflexivity:

—_—
/\ /\ congruence:

replacement:

http://maude.cs.uiuc.edu

® Maude is a language and tool based on RWL
® High performance rewriting modulo axioms

® Modularity, builtins, reflection

® Execution, search, model checking

@ mod VENDING-MACHINE is

sorts Coin Item Place Marking .
subsorts Coin Item < Place < Marking .
op null : -> Marking .
! *** empty marking
ops : -> Coin .
Buy-c Buy-a change ogs z 2 PGS
op _ _ : Marking Marking -> Marking
4 [assoc comm id: null] .
(ii) *** multiset
BRI EbuyV=claiS == el

rl[buy-a]: $ => a q .
rl[change]l]: g gq g => §$.
endm

What is one way to use 3 $s?

Maude> rew $ $ S .
result Marking: g a c ¢

How can I get 2 apples with 3 $s?

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q g c

Solution 2 (state 9)
M:Marking --> g q g a

No more solutions.
states: 10 rewrites: 12)

Starting with 5 $s, can we get 6 apples without
accumulating more than 4 quarters?
eq vm(M) |= nApples(n) = countPlace(M,a) == n .

eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .

Maude> red modelCheck(vm($ $ $ $ $),
[]1-(1ted4Q U nApples(6)) .
result ModelCheckResult: counterexample(...)

Is value conserved?

Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true

Real Time Rewrite
Theories

RealTime Maude

® RT =((50),E R, @,T)
® (((S5,0),BE),R) is an ordinary Rewrite Theory
® (p interprets a abstract notion of time
® T maps rules to terms of sort Time
o T(I) > 0 —- a tick rule,
® T(I) = 0 -- instantaneous rule
® R—-|:t=>1t"intime 1(l) if cond
e Computations/derivations: RT |=t -r-> t’
® cach step instantiates rule, picks a time
® ris the sum of the times of individual steps

,.{;

11

R, R’ range over Time, Trunning= R’ ...

crifrunning]:

{clock(R)} => {clock(R + R")} in time R" if R' <= 24 monus R
reset]: {clock(24)} => {clock(0)}

batterydies]: {clock(24)} => {stopped-clock(24)}

r

r

r

'stopped]:
{stopped-clock(R)} => {stopped-clock(R + R')} in time R

® Property logic: rtLTL
® propositional LTL without Next
® propositions may refer to time
® Analyses [possibly time bounded]
® execution

® search

® model checking

To execute, a strategy is needed to pick times

e Transform RT to RT™>Pef() (mte sampling)
® time picked is max allowed by rule condition
® r is used for the max for unbounded rules

Completeness for mte sampling

RT,to|= ® iff RTmaxDef), ¢ |= &

if RT is time-robust, atoms of & are tick-invariant

tick rule form: conf => delta(conf,R’) in time R’ if R < mte(conf)

Clock ticks:

cri[running]: {clock(R)} => {clock(R + R")} in time R' if R" <= 24 monus R
ri[stopped]: {stopped-clock(R)} => {clock(R + R")} in time R

For running and stopped: delta({clock(R)},R’) = {clock(R + R")}
For running: mte({clock(R)} = 24 monus R
For stopped: mte({clock(R)} = INF

There are simple conditions on delta and mte that guarantee time-robustness
Frequently properties are tick-invariant because they don’t mention variables/
attributes changed by delta.

(tsearch [I] {clock(0)} =>* {clock(X:Time)}
such that X:Time > 24 in time <= 99 .)

eq {stopped-clock(R)} |= clock-dead = true .
eq {clock(R)} |= clock-is(R’) = (R ==R’) .
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

(mc {clock(0)} |=t clockEqualsTime U
(clock-is(24) \/ clock-dead) in time <= 1000 .)

® AER/NCA suite of protocols for reliable, scalable, and TCP-
friendly multicast in active networks -- correctness,
performance (worst case times).

e OGDC (Optimal Geographical Density Control) wireless
sensor network algorithm for picking active nodes

® Always reach stable/sensing state
® bound on time to stable state, coverage

® Wide-mouth frog key sharing -- search for matching
connections, attacks

17

Maude

® PR =((S50),E R,)

® ((S,0),E,R) is a rewrite theory

® TT maps rules to probability distribution functions
® prll:t(x) =>t'(xy) if C(x,y) with probability y := 1T/(x)
® Probablistic Rewriting Temporal Logic

® Plypy @ -- qin{v, 3}, #in{<,2,<>}

® probability that ¢ holds on all/some paths is # p

i

19

PMaude
prl: clock(t,c) =

if B then clock(t+1,c - ¢/1000) else broken(t, ¢ - ¢/1000) fi
with probability B := BERNOULLI(c/1000) .

L

crl: clock(t,c) =
if B then clock(t+1, c - ¢/1000) else broken(t, c - c/1000) fi
if B := float(random(seed)/maxRand) < ¢/1000) .

® testing -- Monte Carlo simulation
® statistical model checking -- Vesta tool
® CSL properties

® statistical qualitative analysis: Quatex language

® E[term] with error bound, confidence

® Problem: attacker fills syn-queue

e Counter measure -- onlr check fraction p of syn’s
(client must sent multiple requests)

® Analysis: (for different p)

® expected number of (of 100) clients that
successfully connect

® probablility that client connects within time t of
Initiating a request

® probablility of successfull attack < .0l

® Cache size =10,000
® timeout = |0 seconds

® number of valid senders = 100

Model-checking Xs attack rate (SYNs per second)
P<o.01(Q(successful cattack())) 1| 5| 64| 100|200 | 400 800 | 1000 | 1200
p = 0.0 (No counter-measure) | .. resu]t N R ¥ 1 1 Y 1 1 1
time (102 sec) | 47 [87 | 280 | 605 | 183 | 183 182 | 182] 181
p = 0.9 (With counter-measure) | . resu_lt F| F F F F F F T T
time (10% sec) | 68 | 75 | 217 | 328 | 896 | 3102 | 11727 | 2281 | 1781

Quatex Analysis

----- |---9--8---8---6-9

100

p=09 ——

p=00 --o---

80 -
5
o
E 60 |
o '
§ 20 -

0 e e & - ,..,.,*_,__&...u

10° 10 10° 10 10*
Attacker’s rate (SYN/sec)

Expected number of clients out of 100 clients that get
connected with the server under DoS attack

XTune

A. Formal

Executable Specification

System Specification:

layered modeling with
cross-layer adaptation

Observer/Property Checker:

extract properties/values from
executable specification

A

A

Control
(i.e., selected
policy/parameter)

Formal Verification

Observables
(i.e., properties,
values)

Controller

Monitoring & Analysis

AApplications B.
Middleware
OS
Hardware

A
[Policy/Parameter Selection }‘%

b

Control
(i.e., selected
policy/parameter)

Cross Layer
Adaptation

Y

Pre-testing

Simulated execution
(i.e., dynamic system
execution behavior)

Model Learning

C.

System Realization

Task/OS Module:
application, scheduling

Device Module: Environment Module:

hardware features

mobility, network status

® System components/layers modeled as objects

® Rules mix time and probability

® combine ideas of RTMaude and PMaude

® Analysis simplifies/improves ideas of PMaude

Control Task

— > Dataflow

> Scheduling Control

3‘/ ------ > Parameter Delivery

~

File MP3
Decoder

MP3 Player Mode

System state -- a clocked configuration

{ < CPU: HW | Timer : 0, policy : P, consumedEnergy : 0.0, ... >
< pbpair:Application | Timer: 0,accEncTime : 0, consecutiveMiss : 0, ...>
< Mobility : NetworkMonitor | Timer : 0, pos : L, speed: |,...>
< Zonelnfo : Zone | currentDLY :dly, currentPLR :alpha ... >
< Random : RandomNGen | seed : N >
... } in time 999999 .

crl [tick]: {conf} in time T => {delta(conf,T’)} in time (T monus T")
if T' := mte(conf) AT gtT' AT gt 0.

Application execution times, packet arrival times ... sampled from
normal and exponential distributions.

v B

30

Quick detection of problematic situations (e.g., battery expires)
Sequential testing

Property [probability (battery expires) < 0.1]
Parameters
alpha (false negative) = 0.05, beta (false positive) = 0.05
theta (threshold) = 0.1, delta (indifference region) = 0.01
133 traces give H1 accept

Black-box testing also confirms the formula
with error of 8.20E-7 with same traces.

Performance

The run time for each statistical model checking is 10-20 msecs
in addition to the sample generation
a feasible proposition for the on-the-fly adaptation

Experiments: Statistical Analysis

(a) Energy Consumption:
[mSample = 100] Fail to reject Ho (p-value = 0.821)
E[Energy Consumption] = 3.7121E9 (o = 5.0%, d = 0.036%)

(b) Decoder Average Deadline Miss Ratio:
[nSample = 100] Reject Ho (p-value = 0.035)
mSample = 110] Fail to reject Ho (p-value = 0.194)
E[Decoder Avg Deadline Miss Ratio] = 0.2032 (a = 5.0%, d = 0.466%)

(c) Decoder Maximum Consecutive Lost:
[mSample = 100] Fail to reject Ho (p-value = 0.884)
mSample = 100] (d = 0.01053) > (6 = 0.01)
mSample = 110] (d = 0.01002) > (6 = 0.01)
mSample = 121] (d = 0.00958) < (6 = 0.01)
E[Decoder Maximum Consecutive Lost] = 3.2314 (o = 5.0%, d = 0.958%))

(b) The first normality (JB) test fails need more samples
(c) The confidence interval from initial samples is greater than the desired interval
=> need more samples

® Quantitative analysis in Maude is done by

® extending basic rewriting with time and
probablilities (a built in random number generator)

® mapping special syntax to core Maude

® execution, search, and various forms of model
checking / statistical analysis

Maude

M. Clavel, F. Duran, S. Eker, |. Meseguer, P. Lincoln, N. Marti-Oliet, and C.Talcott. All
About Maude — A High-Performance Logical Framework. Springer LNCS Vol. 4350,
2007.

RTMaude

P. C. Olveczky and . Meseguer. Abstraction and completeness for RealTime Maude.
In WRLA 2006, pages 128—153.

P. C. Olveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the AER/

NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design, 29(3):253-293, 2006.

P. C. Olveczky and S.Thorvaldsen. Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. In IPDPS 2006.

P. C. Olveczky and M. Grimeland. Formal Analysis of Time-Dependent
Cryptographic Protocols in Real-Time Maude. In IPDPS 2007.

"

34

PMaude

Koushik Sen, Nirman Kumar, José Meseguer and Gul Agha. Probabilistic

Rewrite Theories: Unifying Models, Logics and Tools. Technical Report
UIUCDCS-R-2003-2347, UIUC, May 2003.

Gul Agha, Michael Greenwald, Carl Gunter, Sanjeev Khanna, Jose Meseguer,
Koushik Sen, and Prasanna Thati. Formal Modeling and Analysis of DoS Using
Probabilistic Rewrite Theories. In FCS 2005.

XTUNE

M. Kim, M.-O. Stehr, C.Talcott, N. Dutt, and N.Venkatasubramanian. A
probabilistic formal analysis approach to cross layer optimization in distributed
embedded systems. In FMOODS 2007, LNCS, vol. 4468, pp. 285—-300.

