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PLAN

RWL and Maude

Reasoning about Time: RealTime Maude

Probablistic modeling: PMaude
XTune




® A |ogic for executable specification and analysis
of concurrent, distributed and/or mobile systems

® A logic to specify other logics or languages

® An extension of equational logic with local
rewrite rules expressing

® concurrent change over time

® inference rules




Rewrite theory: (Signature, RewriteRules)

Signature: (Sorts, Ops, Equations) -- an
equational theory describing system state

Rewrite rule: label: t =>1t if cond

Rewriting operates modulo equations

Generates computations / deductions




Deduction Rules

ohe step rewrite: A —»A

closed under

reflexivity:

—_—
/\ /\ congruence:

replacement:




http://maude.cs.uiuc.edu

® Maude is a language and tool based on RWL
® High performance rewriting modulo axioms

® Modularity, builtins, reflection

® Execution, search, model checking




@ mod VENDING-MACHINE is

sorts Coin Item Place Marking .
subsorts Coin Item < Place < Marking .
op null : -> Marking .
! *** empty marking
ops : -> Coin .
Buy-c Buy-a change ogs z 2 PGS
op _ _ : Marking Marking -> Marking
4 [assoc comm id: null] .
(ii) *** multiset
BRI EbuyV=claiS == el

rl[buy-a]: $ => a q .
rl[change]l]: g gq g => §$ .
endm




What is one way to use 3 $s?

Maude> rew $ $ S .
result Marking: g a c ¢

How can I get 2 apples with 3 $s?

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q g c

Solution 2 (state 9)
M:Marking --> g q g a

No more solutions.
states: 10 rewrites: 12)




Starting with 5 $s, can we get 6 apples without
accumulating more than 4 quarters?
eq vm(M) |= nApples(n) = countPlace(M,a) == n .

eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .

Maude> red modelCheck(vm($ $ $ $ $),
[]1-(1ted4Q U nApples(6)) .
result ModelCheckResult: counterexample(...)

Is value conserved?

Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true




Real Time Rewrite
Theories

RealTime Maude




® RT =((50),E R, @,T)
® (((S5,0),BE),R) is an ordinary Rewrite Theory
® (p interprets a abstract notion of time
® T maps rules to terms of sort Time
o T(I) > 0 —- a tick rule,
® T(I) = 0 -- instantaneous rule
® R—-|:t=>1t"intime 1(l) if cond
e Computations/derivations: RT |=t -r-> t’
® cach step instantiates rule, picks a time
® ris the sum of the times of individual steps

,.{;

11




R, R’ range over Time, Trunning= R’ ...

crifrunning]:

{clock(R)} => {clock(R + R")} in time R" if R' <= 24 monus R
reset]: {clock(24)} => {clock(0)}

batterydies]: {clock(24)} => {stopped-clock(24)}

r

r

r

'stopped]:
{stopped-clock(R)} => {stopped-clock(R + R')} in time R




® Property logic: rtLTL
® propositional LTL without Next
® propositions may refer to time
® Analyses [possibly time bounded]
® execution

® search

® model checking




To execute, a strategy is needed to pick times

e Transform RT to RT™>Pef() (mte sampling)
® time picked is max allowed by rule condition
® r is used for the max for unbounded rules

Completeness for mte sampling

RT,to|= ® iff RTmaxDef), ¢ |= &

if RT is time-robust, atoms of & are tick-invariant




tick rule form: conf => delta(conf,R’) in time R’ if R < mte(conf)

Clock ticks:

cri[running]: {clock(R)} => {clock(R + R")} in time R' if R" <= 24 monus R
ri[stopped]: {stopped-clock(R)} => {clock(R + R")} in time R

For running and stopped: delta({clock(R)},R’) = {clock(R + R")}
For running: mte({clock(R)} = 24 monus R
For stopped: mte({clock(R)} = INF

There are simple conditions on delta and mte that guarantee time-robustness
Frequently properties are tick-invariant because they don’t mention variables/
attributes changed by delta.




(tsearch [I] {clock(0)} =>* {clock(X:Time)}
such that X:Time > 24 in time <= 99 .)

eq {stopped-clock(R)} |= clock-dead = true .
eq {clock(R)} |= clock-is(R’) = (R ==R’) .
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

(mc {clock(0)} |=t clockEqualsTime U
(clock-is(24) \/ clock-dead) in time <= 1000 .)




® AER/NCA suite of protocols for reliable, scalable, and TCP-
friendly multicast in active networks -- correctness,
performance (worst case times).

e OGDC (Optimal Geographical Density Control) wireless
sensor network algorithm for picking active nodes

® Always reach stable/sensing state
® bound on time to stable state, coverage

® Wide-mouth frog key sharing -- search for matching
connections, attacks
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Maude




® PR =((S50),E R, )

® ((S,0),E,R) is a rewrite theory

® TT maps rules to probability distribution functions
® prll:t(x) =>t'(xy) if C(x,y) with probability y := 1T/(x)
® Probablistic Rewriting Temporal Logic

® Plypy @ -- qin{v, 3}, #in{<,2,<>}

® probability that ¢ holds on all/some paths is # p

i
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PMaude
prl: clock(t,c) =

if B then clock(t+1,c - ¢/1000 ) else broken(t, ¢ - ¢/1000 ) fi
with probability B := BERNOULLI(c/1000) .

L

crl: clock(t,c) =
if B then clock(t+1, c - ¢/1000 ) else broken(t, c - c/1000 ) fi
if B := float(random(seed)/maxRand) < ¢/1000) .




® testing -- Monte Carlo simulation
® statistical model checking -- Vesta tool
® CSL properties

® statistical qualitative analysis: Quatex language

® E[term] with error bound, confidence




® Problem: attacker fills syn-queue

e Counter measure -- onlr check fraction p of syn’s
(client must sent multiple requests)

® Analysis: (for different p )

® expected number of (of 100) clients that
successfully connect

® probablility that client connects within time t of
Initiating a request

® probablility of successfull attack < .0l




® Cache size =10,000
® timeout = |0 seconds

® number of valid senders = 100

Model-checking Xs attack rate (SYNs per second)
P<o.01(Q(successful cattack())) 1| 5| 64| 100|200 | 400 800 | 1000 | 1200
p = 0.0 (No counter-measure) | .. resu]t N R ¥ 1 1 Y 1 1 1
time (102 sec) | 47 [ 87 | 280 | 605 | 183 | 183 182 | 182 ] 181
p = 0.9 (With counter-measure) | . resu_lt F| F F F F F F T T
time (10% sec) | 68 | 75 | 217 | 328 | 896 | 3102 | 11727 | 2281 | 1781




Quatex Analysis
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A. Formal

Executable Specification

System Specification:

layered modeling with
cross-layer adaptation

Observer/Property Checker:

extract properties/values from
executable specification

A

A

Control
(i.e., selected
policy/parameter)

Formal Verification

Observables
(i.e., properties,
values)

Controller

Monitoring & Analysis

AApplications B.
Middleware
OS
Hardware

A
[ Policy/Parameter Selection }‘%

b

Control
(i.e., selected
policy/parameter)

Cross Layer
Adaptation

Y

Pre-testing

Simulated execution
(i.e., dynamic system
execution behavior)

Model Learning

C.

System Realization

Task/OS Module:
application, scheduling

Device Module: Environment Module:

hardware features

mobility, network status




® System components/layers modeled as objects

® Rules mix time and probability

® combine ideas of RTMaude and PMaude

® Analysis simplifies/improves ideas of PMaude




Control Task

— > Dataflow

> Scheduling Control

3‘/ ------ > Parameter Delivery

~

File MP3
Decoder

MP3 Player Mode




System state -- a clocked configuration

{ < CPU: HW | Timer : 0, policy : P, consumedEnergy : 0.0, ... >
< pbpair:Application | Timer: 0,accEncTime : 0, consecutiveMiss : 0, ...>
< Mobility : NetworkMonitor | Timer : 0, pos : L, speed: |,...>
< Zonelnfo : Zone | currentDLY :dly, currentPLR :alpha ... >
< Random : RandomNGen | seed : N >
... } in time 999999 .

crl [tick]: {conf} in time T => {delta(conf,T’)} in time (T monus T")
if T' := mte(conf) AT gtT' AT gt 0.

Application execution times, packet arrival times ... sampled from
normal and exponential distributions.

v B
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Quick detection of problematic situations (e.g., battery expires)
Sequential testing

Property [probability (battery expires) < 0.1]
Parameters
alpha (false negative) = 0.05, beta (false positive) = 0.05
theta (threshold) = 0.1, delta (indifference region) = 0.01
133 traces give H1 accept

Black-box testing also confirms the formula
with error of 8.20E-7 with same traces.

Performance

The run time for each statistical model checking is 10-20 msecs
in addition to the sample generation
a feasible proposition for the on-the-fly adaptation




Experiments: Statistical Analysis

(a) Energy Consumption:
[mSample = 100] Fail to reject Ho (p-value = 0.821)
E[Energy Consumption] = 3.7121E9 (o = 5.0%, d = 0.036%)

(b) Decoder Average Deadline Miss Ratio:
[nSample = 100] Reject Ho (p-value = 0.035)
mSample = 110] Fail to reject Ho (p-value = 0.194)
E[Decoder Avg Deadline Miss Ratio] = 0.2032 (a = 5.0%, d = 0.466%)

(c) Decoder Maximum Consecutive Lost:
[mSample = 100] Fail to reject Ho (p-value = 0.884)
mSample = 100] (d = 0.01053) > (6 = 0.01)
mSample = 110] (d = 0.01002) > (6 = 0.01)
mSample = 121] (d = 0.00958) < (6 = 0.01)
E[Decoder Maximum Consecutive Lost] = 3.2314 (o = 5.0%, d = 0.958%))

(b) The first normality (JB) test fails need more samples
(c) The confidence interval from initial samples is greater than the desired interval
=> need more samples




® Quantitative analysis in Maude is done by

® extending basic rewriting with time and
probablilities (a built in random number generator)

® mapping special syntax to core Maude

® execution, search, and various forms of model
checking / statistical analysis
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