
Quantitative Abstraction RefinementQuantitative Abstraction Refinement
Marta KwiatkowskaMarta Kwiatkowska

Oxford University Computing Laboratory

MLQA, Edinburgh, July 2010

Joint work with: Dave Parker, Gethin Norman, Mark Kattenbelt

Probabilistic model checking

Probabilistic model ResultProbabilistic model
e.g. Markov chain

Result

0.5 0.4

System

Quantitative
lt

0.1

Probabilistic resultsProbabilistic
model checker

e.g. PRISM

P b bili ti

P<0.1 [F err]

CProbabilistic
temporal logic
specification

e g PCTL CSL LTL

Counter-
example

System
require-
ments

e.g. PCTL, CSL, LTL

Overview

• Probabilistic model checking
− Markov decision processes (MDPs)
− probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
− abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
f− abstraction-refinement loop

− probabilistic model checking for PTAs
− also: verification of probabilistic softwarealso: verification of probabilistic software

• Conclusions & current/future work

Probabilistic models

• Discrete-time Markov chains (DTMCs)
− discrete states, discrete probability distributions

Markov decision processes (MDPs)• Markov decision processes (MDPs)
− discrete states, probability and nondeterminism

• Probabilistic timed automata (PTAs)
− discrete states, probability, nondeterminism and dense time

• Continuous-time Markov chains (CTMCs)
discrete states exponentially distributed delays− discrete states, exponentially distributed delays

• And more... (CTMDPs, IMCs, LMPs, …)(, , ,)

Markov decision processes (MDPs)

• Model nondeterministic as well as probabilistic behaviour
e g concurrency environmental factors under specification− e.g concurrency, environmental factors, under-specification, ...

• Formally, an MDP is a tuple (S, Act, Steps) where:
− S is a set of statesS is a set of states
− Act is a set of actions
− Steps : S×Act → Dist(S) is the transition probability function

{heads}

s1s0

s20.5
0.9

1

{heads}

{init}

10

s3
0.5

0.9 1

{tails}0.1

• An adversary (aka. “scheduler”or “policy”) of an MDP
− is a resolution of the nondeterminism in the MDP

under a given adversary σ the behaviour is fully probabilistic− under a given adversary σ the behaviour is fully probabilistic

Probabilistic reachability for MDPs

• Probabilistic reachability
− fundamental concept in the quantitative verification of MDPs
− ps

σ (F) = probability of reaching F starting from s under σ
− consider the minimum/maximum values over all adversariesconsider the minimum/maximum values over all adversaries
− ps

min(F) = infσ ps
σ (F) and ps

max(F) = supσ ps
σ (F)

0 1ps
min(F) ps

max(F)

− can be computed efficiently (and corresponding adversaries)

ps () ps ()

• Allows reasoning about best/worst-case behaviour
− e.g. minimum probability of the protocol terminating correctly

e g maximum probability of a security breach− e.g. maximum probability of a security breach

Probabilistic reachability for MDPs

• Often focus on quantitative properties:

FireWire protocol:CSMA/CD network protocol: p
Worst case (minimum)
probability of electing
a leader by time T for

Maximum, average and
minimum probability that a
message is sent successfully
b

y
various coin biasesby time T

Probabilistic timed automata

• Probabilistic timed automata (PTAs)
− Markov decision processes + real-valued clocks
− or: timed automata + discrete probabilistic choice
− models timed probabilistic and nondeterministic behaviourmodels timed, probabilistic and nondeterministic behaviour
− essential e.g. for communication protocols such as Zigbee,

Bluetooth, which feature delays, randomisation,
failures and concurrencyfailures and concurrency

0 9

s1
true

PTA d l h ki

s0

0 1 0 05

x≤2

0.9

x≥2
send

x≥1

retry
0.95

• PTA model checking
− infinite-state MDP semantics
− probabilistic (timed) reachability

0.1 0.05
x:=0x:=0 s2

x≤3

probabilistic (timed) reachability

Overview

• Probabilistic model checking
− Markov decision processes (MDPs)
− probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
− abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
f− abstraction-refinement loop

− probabilistic model checking for PTAs
− also: verification of probabilistic softwarealso: verification of probabilistic software

• Conclusions & current/future work

Abstraction

• Very successful in (non-probabilistic) formal methods
− essential for verification of large/infinite-state systems
− hide details irrelevant to the property of interest
− yields smaller/finite model which is easier/feasible to verifyyields smaller/finite model which is easier/feasible to verify
− loss of precision: verification can return “don’t know”

• Construct abstract model of a concrete system
− e.g. based on a partition of the concrete state space

b f− an abstract state represents a set of concrete states

Abstraction refinement (CEGAR)

• Counterexample-guided abstraction refinement
− (non-probabilistic) model checking of reachability properties

abstractinitialise
Abstraction
(existential)

Partition/
predicates

[yes] model
check

[false]

refine

True/false +

[true]
check

counter-
example[no]

True/false +
counterexampleSpurious?

[]example

Return
true

Return
false

Abstraction refinement (CEGAR)

• Counterexample-guided abstraction refinement
− (non-probabilistic) model checking of reachability properties

abstractinitialise
Abstraction
(existential)

Partition/
predicates

How to
abstract

probabilistic
models?

[yes] model
check

[false]

refine

True/false + What is a

models?

[true]
check

counter-
example[no]

True/false +
counterexampleSpurious? counter-

example?

[]example

Return
true

Return
false Quantitative

results?results?

Abstraction of MDPs

• Abstraction increases degree of nondeterminism
− i.e. minimum probabilities are lower and maximums higher

• But what form does the abstraction of an MDP take?

0 1ps
min ps

max

(i) an MDP [D’Argenio et al.’01]
− probabilistic simulation relates concrete/abstract models

(ii) a stochastic two-player game [QEST'06]
− separates nondeterminism from abstraction and from MDPseparates nondeterminism from abstraction and from MDP
− yields separate lower/upper bounds for min/max

0 1ps
min ps

max

Stochastic two-player games

• Subclass of simple stochastic games [Shapley,Condon]
− two nondeterministic players (1 and 2) and probabilistic choice

• Resolution of the nondeterminism in a game
− corresponds to a pair of strategies for players 1 and 2: (σ1,σ2)
− pa

σ1,σ2(F) probability of reaching F from a under (σ1,σ2)
can compute e g : sup inf p σ1 σ2(F)− can compute, e.g. : supσ1 infσ2 pa

σ1,σ2(F)
− informally: “the maximum probability of reaching F that player 1

can guarantee no matter what player 2 does”

• Abstraction of an MDP as a stochastic two-player game:
player 1 controls the nondeterminism of the abstraction− player 1 controls the nondeterminism of the abstraction

− player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

• Player vertices are partition elements (abstract states)1
• (Sets of) distributions are lifted to the abstract state space
• States with same (sets of) choices form player vertices2

MDP (fragment) Stochastic game (fragment)

abstract

0.5 0 10.8

1

0.5
1 111

0 20.80.5 0.10.5
0.1

0.2

Properties of the abstraction

• Analysis of game yields lower/upper bounds:
− for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)

f 1 2() () 1 2()infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

Properties of the abstraction

• Analysis of game yields lower/upper bounds:
− for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)

f 1 2() () 1 2()infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

min/max reachability probabilities for original MDP

0 1ps
min ps

maxps ps

Properties of the abstraction

• Analysis of game yields lower/upper bounds:
− for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)

f 1 2() () 1 2()infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

optimal probabilities for player 1, player 2 in game

0 1ps
min ps

maxps ps

Properties of the abstraction

• Analysis of game yields lower/upper bounds:
− for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)

f 1 2() () 1 2()infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 1ps
min ps

maxps ps

Example

infσ1 supσ2 pa
σ1,σ2 (F) = 0.8

sup p σ1,σ2 (F) = 1
ps

max (F) = 1 ∈ [0.8,1]

a

supσ1,σ2 pa
, (F) = 1

1

s abstract

0.5 0.10.8

1

0.5
1 11

0.1

1

0.20.8

F F F

Abstraction: Example results

• Israeli & Jalfon’s Self Stabilisation [IJ90]
− protocol for obtaining a stable state in a token ring
− minimum probability of reaching a stable state by time T

concrete states: 1,048,575

abstract states: 627

Nondeterministic abstractions

• We can consider a general class of “nondeterministic”
b t ti f b bili ti d labstractions for probabilistic models

C t d l Ab t tiConcrete model:

DTMC

Abstraction:

MDP→

MDP

CTMC

STPG

CTMDP

→

→

CTMDP CTSTPG→

• CTMDP = continuous-time Markov decision process
• CTSTPG = continuous-time stochastic two-player game• CTSTPG = continuous time stochastic two player game

Overview

• Probabilistic model checking
− Markov decision processes (MDPs)
− probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
− abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
f− abstraction-refinement loop

− probabilistic model checking for PTAs
− also: verification of probabilistic softwarealso: verification of probabilistic software

• Conclusions & current/future work

Abstraction refinement

• Consider (max) difference between lower/upper bounds
− gives a quantitative measure of the abstraction’s precision

0 1ps
min(F) ps

max(F)

• If the difference (“error”) is too great, refine the abstraction
− a finer partition yields a more precise abstraction
− lower/upper bounds can tell us where to refine (which states)
− (memoryless) strategies can tell us how to refine

Example

ps
max (F) = 1 ∈ [0.8,1]

“error” = 0.2

ps
max (F) = 1 ∈ [1,1]

“error” = 0

a aa

0.81.0

a

refine

11
0.20.8

11
0.20.8

FF

Abstraction-refinement loop

• Quantitative abstraction-refinement loop for MDPs

Initial abstract
Abstractionpartition

model
h k

Abstraction

Bounds and
strategies

[error≥ε]

check

New
partition

[error<ε]

strategies
refine

partition

Return
bounds

Abstraction-refinement loop

• Quantitative abstraction-refinement loop for MDPs

Initial abstract
Abstraction R fi i ldpartition

model
h k

Abstraction • Refinements yield
strictly finer partition

Bounds and
strategies

[error≥ε]

check

New
partition

• Guaranteed to
converge for finite
models

[error<ε]

strategies
refine

partition

• Guaranteed to
converge for infinite

Return
bounds

converge for infinite
models with finite
bisimulation

Abstraction-refinement loop

• Implementations of quantitative abstraction refinement…

• Verification of probabilistic timed automata [FORMATS’09]
zone based abstraction/refinement using DBMs− zone-based abstraction/refinement using DBMs

− implemented in (next release of) PRISM
− outperforms existing PTA verification techniques

• Verification of probabilistic software [VMCAI’09]
f− predicate abstraction/refinement using SAT solvers

− implemented in tool qprover: components of PRISM, SATABS
− analysed real network utilities (ping, tftp) - approx 1KLOCanalysed real network utilities (ping, tftp) approx 1KLOC

• Verification of concurrent PRISM models [Wachter/Zhang’10]
− implemented in tool PASS; infinite-state PRISM models

Verification of PTAs

• Probabilistic model checking of PTAs

Initial abstract
Abstraction

Abstraction
computed

partition

model
h k

Abstraction
Initial

abstraction
from

and stored
using zones

(DBMs)

Bounds and
strategies

[error≥ε]

check

New
partition

forwards
reachability

[error<ε]

strategies
refine

partition

Return
boundsSplitting of

zones (DBMs)

Guaranteed
convergence
for any ε≥0y

Verification of probabilistic software

Boolean
probabilistic

program
Abstraction

(game)
Probabilistic

program program

model
checking

abstraction
(based on

SAT)

model
construction

model
extraction

Bounds and
strategies

[error≥ε]

refinement
PredicatesANSI-C

program

[error<ε]
refinement
(weakest
precondition)

Return
boundssequential ANSI C +

probabilistic/nondet.
function calls

Overview

• Probabilistic model checking
− Markov decision processes (MDPs)
− probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
− abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
f− abstraction-refinement loop

− probabilistic model checking for PTAs
− also: verification of probabilistic softwarealso: verification of probabilistic software

• Conclusions & current/future work

Related work

• Abstraction for Markov chains:
− DTMCs: probability intervals (MDPs) [Fecher/Leucker/Wolf] [Huth]
− CTMCs: using CTMDPs [Katoen/Klink/Leucker/Wolf]
− CTMCs: sliding window abstraction [Henzinger/Mateescu/Wolf]CTMCs: sliding window abstraction [Henzinger/Mateescu/Wolf]
− and more…

• Abstraction refinement for MDPs:
− RAPTURE [D’Argenio/Jeannet/Jensen/Larsen]

probabilistic CEGAR [Hermanns/Wachter/Zhang]− probabilistic CEGAR [Hermanns/Wachter/Zhang]
− magnifying lens abstraction [de Alfaro/Roy]
− MDP-based abstractions [Chadha/Viswanathan]
− and more…

Conclusions

• Abstraction for probabilistic models
MDP (d PTA) b d h i l− MDPs (and PTAs) abstracted as stochastic two-player games

− abstraction yields lower/upper bounds on probabilities

• Quantitative abstraction refinement
− bounds give quantitative measure of utility of abstraction

bounds/strategies can be used to guide refinement− bounds/strategies can be used to guide refinement
− quantitative abstraction-refinement loop (for error < ε)
− fully automatic generation of abstraction
− works in practice: probabilistic timed automata & software

• Current & future workCurrent & future work
− improved refinement heuristics, imprecise abstractions
− software + time + probabilities

CTMCs timed properties− CTMCs, timed properties
− probabilistic/stochastic hybrid systems

