UNIVERSITY OF

0),4:(0)23D)

Quantitative Abstraction Refinement

Marta Kwiatkowska

Oxford University Computing Laboratory

MLQA, Edinburgh, July 2010

Joint work with: Dave Parker, Gethin Norman, Mark Kattenbelt

Probabilistic model checking

Probabilistic model
System e.g. Markov chain

0.5 0.4

—_— 0.1

oO

System — Probabilistic
require- temporal logic
ments specification

e.g. PCTL, CSL, LTL

—

Q Poi[Ferr]| |

Probabilistic A

—3 Result

v %

model checker

e.g. PRISM

Quantitative
results
) ‘

—p Counter-
example

R

Overview

Probabilistic model checking
— Markov decision processes (MDPs)
— probabilistic timed automata (PTAs)

- Abstraction for probabilistic models
— abstractions of MDPs (stochastic two-player games)

Quantitative abstraction refinement
— abstraction-refinement loop
— probabilistic model checking for PTAs
— also: verification of probabilistic software

Conclusions & current/future work

Probabilistic models

- Discrete-time Markov chains (DTMCs)
— discrete states, discrete probability distributions

- Markov decision processes (MDPs)
— discrete states, probability and nondeterminism

- Probabilistic timed automata (PTAS)
— discrete states, probability, nondeterminism and dense time

- Continuous-time Markov chains (CTMCs)
— discrete states, exponentially distributed delays

- And more... (CTMDPs, IMCs, LMPs, ...)

Markov decision processes (MDPs)

Model nondeterministic as well as probabilistic behaviour
— e.g concurrency, environmental factors, under-specification, ...

Formally, an MDP is a tuple (S, Act, Steps) where:
— Sis a set of states
— Act is a set of actions
— Steps : SXAct — Dist(S) is the transition probability function

- An adversary (aka. “scheduler’or “policy”) of an MDP
— is a resolution of the nondeterminism in the MDP
— under a given adversary o the behaviour is fully probabilistic

Probabilistic reachability for MDPs

Probabilistic reachability
— fundamental concept in the quantitative verification of MDPs
— p.° (F) = probability of reaching F starting from s under o
— consider the minimum/maximum values over all adversaries
— p,""(F) = inf, ps° (F) and p,"**(F) = sup, p,° (F)

0 psmin(F) psmax(F)]

— can be computed efficiently (and corresponding adversaries)

- Allows reasoning about best/worst-case behaviour
— e.g. minimum probability of the protocol terminating correctly
— e.g. maximum probability of a security breach

Probabilistic reachability for MDPs

- Often focus on quantitative properties:

Probability

0.8
0.6
0.4
— maximum
0.2 - - -average
——minimum
800 1000 1200 1400 1600 1800

CSMA/CD network protocol:
Maximum, average and
minimum probability that a
message is sent successfully
by time T

o © o o
N B 0 O

min. probab. electing leader by T
=) r

FireWire protocol:
Worst case (minimum)
probability of electing
a leader by time T for
various coin biases

Probabilistic timed automata

Probabilistic timed automata (PTAS)
— Markov decision processes + real-valued clocks
— or: timed automata + discrete probabilistic choice
— models timed, probabilistic and nondeterministic behaviour

— essential e.g. for communication protocols such as Zigbee,
Bluetooth, which feature delays, randomisation,
failures and concurrency

PTA model checking
— infinite-state MDP semantics
— probabilistic (timed) reachability

Overview

- Abstraction for probabilistic models
— abstractions of MDPs (stochastic two-player games)

Abstraction

+ Very successful in (non-probabilistic) formal methods
— essential for verification of large/infinite-state systems
— hide details irrelevant to the property of interest
— vyields smaller/finite model which is easier/feasible to verify
— loss of precision: verification can return “don’t know”

- Construct abstract model of a concrete system
— e.g. based on a partition of the concrete state space
— an abstract state represents a set of concrete states

(
— \
1\ J
> 4
4 N
—__

Abstraction refinement (CECAR)

Counterexample-guided abstraction refinement
— (non-probabilistic) model checking of reachability properties

Partition/
predicates

[yes]‘ refine
L Spurious?

[no]

Return
false

initialise
{

] abstract [

Abstraction
(existential)

model
check
[false] e
IHuc/lais>c -
counterexample
check P
counter-
example [true]

Return
true

Abstraction refinement (CECAR)

Counterexample-guided abstraction refinement
—Mprobabilistic) model checking of reachability properties

initialise — abstract : How to
- Partition/ Abstraction \ | _» abstract
predicates (existential) probabilistic
J models?
: model
[yes]‘ refine I check

L Spurious?
counter-

[”O] example [true]

n Quantitative
results?

What is a
counter-
example?

Abstraction of MDPs

- Abstraction increases degree of nondeterminism
— i.e. minimum probabilities are lower and maximums higher

0 psmin psmax]

But what form does the abstraction of an MDP take?

(i) an MDP [D’Argenio et al.’01]
— probabilistic simulation relates concrete/abstract models
(ii) a stochastic two-player game [QEST'06]
— separates nondeterminism from abstraction and from MDP
— yields separate lower/upper bounds for min/max

0 p rr;in | D max. 1
S s

Stochastic two-player games

- Subclass of simple stochastic games [Shapley,Condon]
— two nondeterministic players (1 and 2) and probabilistic choice

Resolution of the nondeterminism in a game
— corresponds to a pair of strategies for players 1 and 2: (o,,0,)
— p,°"'9%(F) probability of reaching F from a under (o,,0,)
— can compute, e.g. : sup_, inf_, p,7"%(F)

— informally: “the maximum probability of reaching F that player 1
can guarantee no matter what player 2 does”

- Abstraction of an MDP as a stochastic two-player game:
— player 1 controls the nondeterminism of the abstraction
— player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

- Player @ vertices are partition elements (abstract states)

- (Sets of) distributions are lifted to the abstract state space

- States with same (sets of) choices form player vertices

MDP (fragment) Stochastic game (fragment)

[[/ =)
] (-

=)

[

|

|

v

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf, o, P,°"9%(F) < p™(F) < supg inf, p,7"°%F)

inf,, supg, p,°"°%F) < p/™(F) < supy g P, %(F)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

o102 P70 < (BINE) < supy i, b,)
infcl SUpGZ paG]’GZ(F) — @ = Supcﬂ,oZ paG]’GZ(F)

min/max reachatility probabilitifs for original MDP

inf

0 p m.in | P max-]
s s

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf olo2(F) < p/m"(F) =< Csup,, inf,, p,o"7%(F)

ol,o0?2 pa

@supcr2 P74 (F))< p,m(F)

optimal probabilities for player 1, player 2 in game

0 p min P max-]
s s

su pcﬂ ,02 pam ’GZ(F)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

@’02 pa‘”@g p,™"(F) =< supg infy, p,7"7%(F)
info, supg, P\ *(F) < pm(F) 3@1,02 p;"@

min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 p m.in | P max-]
s s

inf_, sup_, p,°""°?(F) = 0.8

max(fF) = 1 € [0.8,1
p. " (F) [] sup,, ., o192 (F) = 1

Abstraction: Example results

Israeli & Jalfon’s Self Stabilisation [1J90]
— protocol for obtaining a stable state in a token ring
— minimum probability of reaching a stable state by time T

5 02— .

£ - ==upper bound

- —actual value

- 0.15|.- - lower bound

3 concrete states: 1,048,575
T o abstract states: 627
7))

5 0.05/

a

= 0 ==

= 80 90 100 110 120

T (time units)

Nondeterministic abstractions

- We can consider a general class of “nondeterministic”
abstractions for probabilistic models

Concrete model: Abstraction:
DTMC 4 MDP
MDP 4 STPG
CTMC R CTMDP

CTMDP 4 CTSTPG

- CTMDP = continuous-time Markov decision process
- CTSTPG = continuous-time stochastic two-player game

Overview

Quantitative abstraction refinement
— abstraction-refinement loop
— probabilistic model checking for PTAs
— also: verification of probabilistic software

Abstraction refinement

Consider (max) difference between lower/upper bounds
— gives a quantitative measure of the abstraction’s precision

. .
. .
. .

0 p,m"(F) p,"2X(F) 1

If the difference (“error”) is too great, refine the abstraction
— a finer partition yields a more precise abstraction
— lower/upper bounds can tell us where to refine (which states)
— (memoryless) strategies can tell us how to refine

p,"(F) =1 €[0.8,1] p."x(F) =1 € [1,1]
“error” = 0.2 “error’ = 0
a_ | 2 | |

Abstraction-refinement loop

- Quantitative abstraction-refinement loop for MDPs

Initial abstract
par;m?on Abstraction
model
check
New Boundsand
e AR e ctrateniac
partition [¥v | 2UalLyic
1 [error<e]
Return

bounds

Abstraction-refinement loop

. abstract
Initial

Seriitar Abstraction

model
check

Bounds and

c<trateaqaiec

> A | \'\L\.—vl_d

Return
bounds

- Quantitative abstraction-refinement loop for MDPs

- Refinements yield
strictly finer partition

- Guaranteed to
converge for finite
models

- Guaranteed to
converge for infinite
models with finite
bisimulation

Abstraction-refinement loop
...

Implementations of quantitative abstraction refinement...

- Verification of probabilistic timed automata [FORMATS’09]
— zone-based abstraction/refinement using DBMs
— implemented in (next release of) PRISM
— outperforms existing PTA verification techniques

- Verification of probabilistic software [VMCAI'09]
— predicate abstraction/refinement using SAT solvers
— implemented in tool gprover: components of PRISM, SATABS
— analysed real network utilities (ping, tftp) — approx 1KLOC

- Verification of concurrent PRISM models [Wachter/Zhang’10]
— implemented in tool PASS; infinite-state PRISM models

Verification of PTAs

Probabilistic model checking of PTAs

Abstraction

Initial abstract . computed
o Ll Abstraction
Initial partition and stored
abstraction _ using zones
from model (DBMs)
forwards check
reachability
New Bounds and
partition strategies
/ 1 [error<e] \
o o Guaranteed
Splitting of o convergence

zones (DBMs) for any €>0

Verification of probabilistic software

Probabilistic prlcg)(l)o(;llgi?igtic Ab(stracti)on
program game
abstraction program model
odel (based on construction o del
extraction SAT) checking
[error=€]
ANSI-C . Bounds and
program Predicates strategies
refinement
(weakest lerror<e]
precondition)
Return
sequential ANSI C + bounds

probabilistic/nondet.
function calls

Overview
|

- Conclusions & current/future work

Related work

- Abstraction for Markov chains:
— DTMCs: probability intervals (MDPs) [Fecher/Leucker/Wolf] [Huth]
— CTMCs: using CTMDPs [Katoen/Klink/Leucker/Wolf]
— CTMCs: sliding window abstraction [Henzinger/Mateescu/Wolf]
— and more...

- Abstraction refinement for MDPs:
— RAPTURE [D’Argenio/Jeannet/Jensen/Larsen]

mmralhalilictyimr CCOCAD TLdacimmmimom o /\A s~ bk Ao R, |
— propapiiistic CEGAR [Hermanns/Wachter/Znang]

— magnifying lens abstraction [de Alfaro/Roy]
— MDP-based abstractions [Chadha/Viswanathan]
— and more...

Conclusions

- Abstraction for probabilistic models
— MDPs (and PTAs) abstracted as stochastic two-player games
— abstraction yields lower/upper bounds on probabilities

- Quantitative abstraction refinement
— bounds give quantitative measure of utility of abstraction
— bounds/strategies can be used to guide refinement
— quantitative abstraction-refinement loop (for error < €)
— fully automatic generation of abstraction
— works in practice: probabilistic timed automata & software

Current & future work
— improved refinement heuristics, imprecise abstractions
— software + time + probabilities
— CTMCs, timed properties
— probabilistic/stochastic hybrid systems

