2-Valued and 3-Valued Abstraction-Refinement Frameworks for Model Checking

Orna Grumberg
Technion
Haifa, Israel

MLQA workshop at FLOC 2010

Outline

- 2-valued Abstraction
 - CounterExample-Guided Abstraction-Refinement (CEGAR)
- 3-Valued Abstraction
 - Three-Valued abstraction-Refinement (TVAR)
 - Application

Main limitation of Model Checking

The state explosion problem:

Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Solutions to the state explosion problem

Small models replace the full, concrete model:

- Abstraction
- Compositional verification
- Partial order reduction
- Symmetry

Branching-time Temporal Logics

CTL, CTL*, μ -calculus

Can characterize properties referring to

- All behaviors
- Some behavior
- Their combination

ACTL / ACTL* / Aµ-calculus (also LTL)

The universal fragments of the logics, with can characterize only all behaviors

2-valued CounterExample-Guided Abstraction Refinement (CEGAR)

for Universal temporal logics

[CGJLV00]

Abstraction preserving Aµ-calculus

Existential Abstraction:

The abstract model is an over-approximation of the concrete model:

- The abstract model has more behaviors
- But no concrete behavior is lost
- Every ACTL/ACTL*/A μ -calculus property true in the abstract model is also true in the concrete model

Existential Abstraction

Given an abstraction function $h: S \rightarrow S_A$, the concrete states are grouped and mapped into abstract states:

Existential Abstraction (cont.)

Given an abstraction function $h: S \rightarrow S_A$, the concrete states are grouped and mapped into abstract states:

Labeling of abstract states

The abstraction function $h: S \rightarrow S_A$ is chosen so that:

If
$$h(s) = h(t) = s_A$$
 then $L(s) = L(t)$

•
$$L_A(s_A) = L(s)$$

Widely used Abstractions (S_A, h)

- For Hardware: Localization reduction: each variable either keeps its concrete behavior or is fully abstracted (has free behavior) [Kurshan94]
- For Software: Predicate abstraction: concrete states are grouped together according to the set of predicates they satisfy [6597,5599]

They are determined based on the program's control flow and the checked property

Logic Preservation Theorem

- Theorem $M_C \leq M_A$, therefore for every $A\mu$ -calculus formula ϕ ,

$$M_A \mid = \phi \Rightarrow M_C \mid = \phi$$

However, the reverse may not be valid.

Traffic Light Example

Property: φ = AG AF ¬ (state=red)

Abstraction function h maps green, yellow to go.

$$M_C \mid = \phi \iff M_A \mid = \phi$$

Traffic Light Example (Cont)

If the abstract model invalidates a specification, the actual model may still satisfy the specification.

- $M_C \mid = \varphi$ but $M_A \not = \varphi$
- Spurious Counterexample:

The CEGAR Methodology

Generating the Initial Abstraction

- If we use predicate abstraction then predicates are extracted from the program's control flow and the checked property
- If we use localization reduction then the unabstracted variables are those appearing in the predicates above

Counterexamples

- For AGp it is a finite path to a state satisfying ¬p
- For AFp it is an infinite path represented by a lasso (finite path+loop), where all states satisfy ¬p

Path Counterexample

Assume that we have four abstract states

$$\{1,2,3\} \leftrightarrow \alpha \qquad \{4,5,6\} \leftrightarrow \beta$$

 $\{7,8,9\} \leftrightarrow \gamma \qquad \{10,11,12\} \leftrightarrow \delta$

Abstract counterexample $T_A = \langle \alpha, \beta, \gamma, \delta \rangle$

 T_A is not spurious, therefore, $M \not\models \phi$

Remark:

- δ and $\{10, 11, 12\}$ are labeled the same
 - If δ satisfies $\neg p$ then 10, 11, 12 also satisfy $\neg p$

Therefore, (1, 4, 9, 12) is a concrete path counterexample

Spurious Path Counterexample

 T_A is spurious

The concrete states mapped to the failure state are partitioned into 3 sets

states	dead-end	bad	irrelevant
reachable	yes	no	no
out edges	no	yes	no

Refining The Abstraction

- Goal: refine h so that the dead-end states and bad states do not belong to the same abstract state.
- For this example, two possible solutions.

Automatic Refinement

If the counterexample is spurious

- Find a splitting criterion that separates the bad states from the dead-end states in the failure state
- Apply the splitting criterion to splitting either only the failure state or all states
 - Faster convergence of the CEGAR loop
 - Faster growing abstract models

Checking for Spurious Path Counterexample

• $T = (a_1,...a_n)$ - a path abstract counterexample

$$h^{-1}(a) = \{ s \mid h(s) = a \}$$

Checking for Spurious Path Counterexample (cont.)

The set of concrete counterexamples corresponding to $T = (a_1,...a_n)$:

$$h^{-1}(T) = \{ (s_1,...s_n) \mid \Lambda_i h(s_i) = a_i \wedge I(s_1) \wedge \Lambda_i R(s_i,s_{i+1}) \}$$

Is $h^{-1}(T)$ empty?

Checking for Spurious Path Counterexample

T_h is spurious

Refining the abstraction

• Refinement separates dead-end states from bad states, thus, eliminates the spurious transition from a_{i-1} to a_i

BDD-based computation of $h^{-1}(a_1),..., h^{-1}(a_n)$

```
S_1 = h^{-1}(a_1) \cap I
For i = 2,...,n do
S_i = successors(S_{i-1}) \cap h^{-1}(a_i)
if S_i = \emptyset then
dead-end := S_{i-1}
return(i-1, dead-end)
print ("counterexample exists")
Return (S_1,...,S_n)
```

Computing a concrete counterexample from $S_1,...,S_n$

```
t_n = \text{choose } (S_n)
For i = n-1 to 1
t_i = \text{choose } (\text{predecessors}(t_{i+1}) \cap S_i)
Return ((t_1, ..., t_n))
```

Implementing CEGAR

With BDDs:

- The concrete model M is finite but too big to directly apply model checking on
- R and I can be held as BDDs in memory, R possibly partitioned: $R(V,V') = \Lambda_i R_i (V, v_i')$
- h is held as BDD over concrete and abstract states

Can also be implemented with SAT or Theorem Prover

Three-Valued Abstraction Refinement (TVAR)

for Full μ -calculus

[SG03,GLLS05]

Goal: Logic preservation for full μ -calculus

Theorem

If M_A is an abstraction of M_C then for every $\mu\text{-calculus}$ formula ϕ ,

$$M_A \mid = \phi \Rightarrow M_C \mid = \phi$$
 $M_A \mid \neq \phi \Rightarrow M_C \mid \neq \phi$

• But sometimes $[M_A = \phi] = don't know$

Abstract Models for μ -calculus

- Two transition relations [LT88]
- Kripke Modal Transition System (KMTS)
- $M = (S, S_0, Rmust, Rmay, L)$
 - Rmust: an under-approximation
 - Rmay: an over-approximation
 - Rmust ⊆ Rmay

Abstract Models for CTL* (cont.)

Labeling function:

- L: $S \rightarrow 2$ Literals
- Literals = $AP \cup \{\neg p \mid p \in AP \}$
- At most one of p and $\neg p$ is in L(s).
 - Concrete: exactly one of p and $\neg p$ is in L(s).
 - KMTS: possibly none of them is in L(s).

Abstract Models for CTL (cont.)

- Concrete Kripke structure $M_c = (S_c, S_{0c}, R_c, L_c)$
- Set of abstract states S_A
- Concretization function $\gamma: S_A \to 2^{Sc}$
- Abstract KMTS $M_A = (S_A, S_{0A}, Rmust, Rmay, L_A)$

Abstract Models for CTL (cont.)

Given a concretization function $\gamma: S_A \to 2^{Sc}$, the concrete states are grouped and mapped into abstract states:

Abstract Models for μ -calculus (cont.)

Labeling of abstract states

Abstract Models for μ -calculus (cont.)

3-Valued Semantics

- Universal properties (Aψ):
 - Truth is examined along all may-successors
 - Falsity is shown by a single must-successor
- Existential properties (E_Ψ):
 - Truth is shown by a single must-successor
 - Falsity is examined along all may-successors

3-Valued Framework

tt, ff are definite

- Abstraction preserves both truth and falsity
- (abstract) s_a represents (concrete) s_c :
 - φ is true in $s_a \Rightarrow \varphi$ is true in s_c
 - φ is false in $s_a \Rightarrow \varphi$ is false in s_c
 - φ is \perp in $s_a \Rightarrow$ the value of φ in s_c is unknown

[BG99]

The TVAR Methodology

3-Valued Model Checking: Example

MC graph

Abstraction-Refinement

- Traditional abstraction-refinement is designed for 2-valued abstractions:
 - True holds in the concrete model.
 - False may be a false alarm.
- ⇒ Refinement is needed when the result is false and is based on a counterexample analysis.

3-Valued Model Checking Results

• tt and ff are definite: hold in the concrete model as well.

- \(\perp \) is indefinite
 - ⇒ Refinement is needed.

Refinement

 As for the case of 2-values, done by splitting abstract states

Refinement

- Identify a failure state: a state s_a for which some subformula ϕ is \bot in s_a
 - Done during model checking
- Split s_a so that
 - an indefinite atomic proposition becomes definite (true or false), or
 - A may transition becomes a must transition or disappears

Refinement (cont.)

- Uses the colored MC graph
- Find a failure node n_f:
 - a node colored \bot whereas none of its sons was colored \bot at the time it got colored.
 - the point where certainty was lost
- purpose: change the \perp color of n_f .

Refinement is reduced to separating subsets of the concrete states represented by n_f .

concrete states that have a son corresponding to the may-edge are separated from the rest

- Find a criterion that separates the two sets of concrete states.
 - Can be done using known techniques. [CGJLV00,CGK502]
- ⇒ build a refined model accordingly

Completeness

 Our methodology refines the abstraction until a definite result is received.

• For finite concrete models iterating the abstraction-refinement process is guaranteed to terminate, given any CTL / CTL* / μ -calculus formula.

Incremental Abstraction-Refinement

No reason to split states for which MC results are definite during refinement.

- After each iteration remember the nodes colored by definite colors.
- Prune the refined MC graph in sub-nodes of remembered nodes.
 - [(s_a, φ) is a sub-node of (s_a', φ') if $\varphi = \varphi'$ and $\gamma(s_a) \subseteq \gamma'(s_a')$]
- Color such nodes by their previous colors.

Example

Conclusion

We presented two frameworks for abstraction-refinement in model checking:

- Model Checking for abstract models
 - For 2-valued semantics: as for concrete models
 - For 3-valued semantics: using MC-graph
- Refinement eliminating
 - Counterexamples, in the 2-valued case
 - indefinite results, in the 3-valued case
- · Incremental abstraction-refinement
 - Called lazy abstraction in the 2-valued case

Summary

We presented two frameworks, CEGAR and TVAR, for abstraction-refinement in model checking:

- Properties preserved:
 - CEGAR: Aμ-calculus (ACTL)
 - TVAR: Full μ-calculus
- · Refinement eliminates
 - CEGAR: Counterexamples
 - TVAR: indefinite results (⊥)

Summary (cont.)

The TVAR framework requires

- · Different abstract models (Rmust, Rmay)
 - Rmust is harder to compute
- Adapted model checking algorithm

Successful applications in:

- Compositional model checking
- 3-valued Bounded Model Checking (BMC)

Its usefulness worth the extra effort

Conclusion

3-valued abstract models are useful:

- More precise
- · Enable verification and falsification
- Avoid false negative results

Thank You