2-Valued and 3-Valued Abstraction-
Refinement Frameworks for Model Checking

Orna Grumberg
Technion
Haifa, Israel

MLQA workshop at FLOC 2010

Outline

- 2-valued Abstraction

- CounterExample-Guided Abstraction-
Refinement (CEGAR)

- 3-Valued Abstraction

- Three-Valued abstraction-Refinement (TVAR)
- Application

Main limitation of Model Checking

The state explosion problem:

Model checking is efficient in time but
suffers from high space requirements:

The number of states in the system model grows
exponentially with

= the number of variables
= the number of components in the system

Solutions to the state explosion problem

Small models replace the full, concrete model:
+ Abstraction

+ Compositional verification

* Partial order reduction

* Symmetry

Branching-time Temporal Logics

CTL, CTL*, u-calculus

Can characterize properties referring to
- All behaviors

-+ Some behavior

* Their combination

ACTL / ACTL* / Apu-calculus (also LTL)

The universal fragments of the logics, with can
characterize only all behaviors

2-valued CounterExample-Guided
Abstraction Refinement (CEGAR)

for Universal temporal logics

[CGILVOO]

Abstraction preserving Au-calculus

Existential Abstraction:

The abstract model is an over-approximation of the
concrete model:

- The abstract model has more behaviors
- But no concrete behavior is lost

Every ACTL/ACTL*/Au-calculus property true in
the abstract model is also true in the concrete
model

Existential Abstraction

Given an abstraction functionh: S - S,, the
concrete states are grouped and mapped into
abstract states :

Existential Abstraction (cont.)

Given an abstraction functionh : S — S,, the
concrete states are grouped and mapped into
abstract states:

Labeling of abstract states

The abstraction functionh:S —> S, is
chosen so that:

If h(s) = h(t) =s, then L(s) = L(%)
La(s4) = L(s)

10

Widely used Abstractions (S, h)

= For Hardware:
Localization reduction: each variable either keeps
its concrete behavior or is fully abstracted (has
free behavior) [Kurshan94]

= For Software:
Predicate abstraction: concrete states are
grouped together according to the set of
predicates they satisfy [6597,5599]

They are determined based on the program's control
flow and the checked property

11

Logic Preservation Theorem

» Theorem M, < M,, therefore for every
Au-calculus formula o,

M, |z 90 =M. =09

= However, the reverse may not be valid.

12

Traffic Light Example

Property: Abstraction function h
¢ =AG AF - (state=red) maps green, yellow to

13

Traffic Light Example (Cont)

If the abstract model invalidates a specification,
the actual model may still satisfy the specification.

= Property:
¢ =AG AF (state=red)

- MC |: () but MA/F:)

= Spurious Counterexample:

(red,go,go, ...)

14

The CEGAR Methodology

lMGnd(P

generate initial
abstraction

refinement

L -

1 M,

MA = ¢

model check

1MA I- ¢

generate
counterexample Ta

I T,

IS spurious

check spurious

counterexample

T, is not spurious

15

Generating the Initial Abstraction

= If we use predicate abstraction then
predicates are extracted from the
program's control flow and the checked
property

« If we use localization reduction then the
unabstracted variables are those appearing
in the predicates above

16

Counterexamples

+ For AGp it is a finite path to a state
satisfying —p

* For AFp it is an infinite path represented
by a lasso (finite path+loop), where all
states satisfy —p

17

Path Counterexample

Assume that we have four abstract states
{123} a {456}
{789}y {10,1112} < 6

Abstract counterexample T,= (a, 3, v, &)

[] g g g
L » L
L] . L] . L] . L] .
L . L \J L \J L .
LJ . LJ . LJ . LJ .
. LJ . LJ .
L4 . L4 . L4 .
LJ . LJ . LJ .
LJ . LJ . LJ .
LJ . LJ \J LJ \J

T, is not spurious, therefore, M |£ ¢

18

Remark:

+ 5 and {10, 11, 12} are labeled the same

- If 5 satisfies —p then 10, 11, 12 also
satisfy —p

Therefore, (1,4, 9, 12) is a concrete
path counterexample

19

Spurious Path Counterexample

failure state

The concrete states mapped

peop

>! > > .

! ! to the failure state are

L. artitioned into 3 sets
\:‘\ 0 ® P

PN N\JO |\ @

0| Fo| e

states dead-end| bad |[irrelevant
reachable | yes no no

T, is spurious out edges| no yes no

20

Refining The Abstraction

« Goal : refine h so that the dead-end states and

bad states do not belong to the same abstract
state.

= For this example, two possible solutions.

o o o ° 0
‘ N O ‘\ ©
oo N0 | [e oo N\ K

\‘ % 21

Automatic Refinement

If the counterexample is spurious

» Find a splitting criterion that separates
the bad states from the dead-end states
in the failure state

- Apply the splitting criterion to splitting
either only the failure state or all states
- Faster convergence of the CEGAR loop
- Faster growing abstract models

22

Checking for Spurious Path Counterexample

- T=(ay,..a,) - a path abstract
counterexample

h'(a)={s | h(s)=a}

23

Checking for Spurious Path Counterexample
(cont.)

The set of concrete counterexamples
corresponding to T = (ay,..a,)

h-i(T) = { (sy,..s,) | A h(s)=a; A I(s;) A
AR(s;.Si1) }

Is h'i(T) empty?

24

Checking for Spurious Path Counterexample

1"

?epl.

L 2

']
"-.:VV
I“‘-

"-..: v
I“‘-

uy
a8

.>0\
T~
o

T, 1S spurious

25

Refining the abstraction

+ Refinement separates dead-end states
from bad states, thus, eliminates the
spurious transition from a. ; to g

26

BDD-based computation of
h-!(ay)..., h"!(a,)

S;=hlla)nI

Fori=2,.,ndo
S, = successors(S; ;) N h(a)
if ;= then
dead-end = S_,

return(i-1, dead-end)
print ("counterexample exists")
Return (S;,...,S,)

27

Computing a concrete counterexample
from 51,...,Sn

t, = choose (S,)
Fori=n-1to1

t, = choose (predecessors(t;,;) N S;)
Return ((t,...1,))

28

Implementing CEGAR

WITh BDDs:

The concrete model M is finite but too big to directly apply
model checking on

R and I can be held as BDDs in memory, R possibly
partitioned:
R(V,V') - AI RI (V, V,')

h is held as BDD over concrete and abstract states

Can also be implemented with SAT or Theorem Prover

29

Three-Valued Abstraction Refinement
(TVAR)

for Full p-calculus

[SG03,6LLS05]

30

Goal:
Logic preservation for full u-calculus

Theorem

If M, is an abstraction of M. then for every
u-calculus formula o,

M, = 0=>M, = ¢
My l= 0= M |= 0

+ But sometimes [M, |= ¢] = don't know

31

Abstract Models for n-calculus

- Two transition relations [LTss]

+ Kripke Modal Transition System (KMTS)
* M= (S, Sy, Rmust, Rmay, L)

- Rmust: an under-approximation
- Rmay: an over-approximation
- Rmust < Rmay

32

Abstract Models for CTL* (cont.)

Labeling function :

. |L: S— P2literals

+ Literals = AP u {—p | pcAP}

+ At most one of p and —p is in L(s).

- Concrete: exactly one of p and —p is in L(s).
- KMTS: possibly none of them is in L(s).

33

Abstract Models for CTL (cont.)

» Concrete Kripke structure

Mc = (Sc, Soc, Re. Le)

- Set of abstract states S,

- Concretization functiony: S, —2°¢

1l

- Abstract KMTS

M, = (54, Soa, Rmust, Rmay, L,)

34

Abstract Models for CTL (cont.)

Given a concretization functiony: S, —2°¢, the
concrete states are grouped and mapped into
abstract states :

Abstract Models for u-calculus (cont.)

Labeling of abstract states

36

Abstract Models for u-calculus (cont.)

may: over
approximatio

(39)

must and may transitions: _ ——

37

3-Valued Semantics

» Universal properties (Ay) :
- Truth is examined along a// may-successors
- Falsity is shown by a sing/e must-successor

+ Existential properties (Ey) :
- Truth is shown by a s/ng/e must-successor
- Falsity is examined along a// may-successors

38

tt, ff are

3-Valued Framework i

- Additional truth value: L (indefinite)

- Abstraction preserves both truth and
falsity

* (abstract) s, represents (concrete) s,

- ¢ IS true ins,= o IS true In s,

- pisfalseins, = @ is false in's,

- ¢ is L ins, = the value of ¢ in s, is unknown

[BG99]

39

The TVAR Methodology

lMGnd([)

generate initial
abstraction

1 lMA [M, |23 0] = t1,ff

model check
refinement
UMA =3¢]=1
‘ find and analyze
failure node

40

3-Valued Model Checking: | m:

Example .S &@t

¢ = AXp AEXq

41

MC graph M‘S &@g}t

\‘ ¢ = AXp AEXq

| (s, AXpAEXQ) |

N

_.AXp) | [(s EXq) |

(s,p) (t, p) (s,q) (t,q)

42

Tt

Coloring the MC graph | M:
=5 G- G

7 ﬁs, AXpAEXq) | @ = AXp AEXq
% S
o1 [AXp) || [[.EXq) | | ©
VAN VAR -
\\ \ O

/ . R 2‘ reason for unknown:

s, p)J || L&p))| G| Lt aq) may-son
: 5 3 4 - not enough to verify

- prevents refutatign

43

Abstraction-Refinement

* Traditional abstraction-refinement is
designed for 2-valued abstractions:
- True holds in the concrete model.
- False may be a false alarm.

= Refinement is needed when the result is
false and is based on a counterexample
analysis.

44

3-Valued Model Checking Results

- 1 and ff are definite: hold in the
concrete model as well.

* | isindefinite
= Refinement is needed.

45

Refinement

» As for the case of 2-values, done by
splitting abstract states

46

Refinement

+ Identify a failure state: a state s, for
which some subformula ¢ is L in's,

- Done during model checking

- Split s, so that
- an indefinite atomic proposition becomes
definite (true or false), or

- A may fTransition becomes a must transition
or disappears

47

Refinement (cont.)

» Uses the colored MC graph
» Find a failure node n;:

- a node colored | whereas none of its sons was
colored | at the time it got colored.
- the point where certainty was lost

» purpose: change the | color of n;.

Refinement is reduced to separating subsets
of the concrete states represented by n;.

48

Tt M:
—y Example sﬁ-- E-Et
7 [J(s, AXpAEXq) | @ = AXp AEXq
failure
9 || (s, AXp) | (Is, EXq) 6
v / v\

reason for failure:

(s, p)

may-son

1

- not enough to verify
- prevents refutatign

49

Example (cont.) (6. EXq)]

\

concrete states that have a son corresponding to the
may-edge are separated from the rest

50

Example (cont.)

- Find a criterion that separates the two
sets of concrete states.

- Can be done using known techniques.
[C6ILV00,C6KS02]

= build a refined model accordingly

51

52@3
AXp AEXq

Py I

= =

P

-

-

@)

O .

-~ —

N &

i |
<

o <

X o

Ly 12
N

O
VY
o
~ e
o
Z
ad
=N ~
A2 N 2
| —
— ~
o o
e \ iy
/A\ N—’
AN
| —
ZIN=
&
To) N

52

wutt Example (cont.) | M:

- D!

I 2 i
32@3

/LG AXpAEXq)| 0 = AXp AEXq

5

0y

/ \
) [ap)

1 2 3 4

53

Completeness

* Our methodology refines the abstraction
until a definite result is received.

* For finite concrete models iterating the
abstraction-refinement process is
guaranteed to terminate, given any

CTL / CTL* / p-calculus formula.

54

Incremental Abstraction-Refinement

No reason to split states for which MC
results are definite during refinement.

- After each iteration remember the nodes
colored by definite colors.

» Prune the refined MC graph in sub-nodes of
remembered nodes.

[(s., 9) is a sub-node of (s, ¢') if p=¢' and y(s,)Sy'(s.)]
» Color such nodes by their previous colors.

55

56

Example (cont.)

<
Q.
O
-
b
QO
=
O
Q
=
Y—
Q)
(a4

57

Example (cont.)

Example (cont.)

<
Q.
O
-
b
QO
=
O
Q
=
Y—
Q)
(a4

59

Conclusion

We presented two frameworks for
abstraction-refinement in model checking:

* Model Checking for abstract models
- For 2-valued semantics: as for concrete models
- For 3-valued semantics: using MC-graph
* Refinement eliminating
- Counterexamples, in the 2-valued case
- indefinite results, in the 3-valued case

* Incremental abstraction-refinement
- Called lazy abstraction in the 2-valued case

60

Summary

We presented two frameworks, CEGAR and
TVAR, for abstraction-refinement in model
checking:

» Properties preserved:
- CEGAR: Ap-calculus (ACTL)
- TVAR: Full p-calculus

- Refinement eliminates
- CEGAR: Counterexamples

- TVAR: indefinite results (1)

61

Summary (cont.)

The TVAR framework requires

+ Different abstract models (Rmust, Rmay)
- Rmust is harder to compute

» Adapted model checking algorithm

Successful applications in:
» Compositional model checking
» 3-valued Bounded Model Checking (BMC)

Tts usefulness worth the extra effort

62

Conclusion

3-valued abstract models are useful:
* More precise

» Enable verification and falsification
» Avoid false negative results

63

Thank You

