TR-MAC: An Energy-Efficient MAC Protocol for Wireless Sensor Networks exploiting Noise-based Transmitted Reference Modulation

Sarwar Morshed & Geert Heijenk University of Twente, The Netherlands.

Outline

- Research motivation
- Background
- TR-MAC Protocol
- Analysis
- Conclusion

Research Motivation

- Why another new MAC protocol?
 - Exploit the advantages of Transmitted Reference (TR) modulation minimizing its drawbacks
 - Incorporating energy harvesting gives new requirement in wireless sensor networks
 - Need an efficient energy-driven protocol

Transmitted Reference Modulation

- Fast synchronization
- Inherent multiplexing
- No power hungry stable oscillators
- More transmission power for individual bits

TR-MAC: Based on TR modulation

Preamble can be very small

• Data might be sent right away with preamble

• Implicit identification of (possible simultaneous) transmissions based on offset between reference signal and data

Mitigate transmit power penalty

Related work

- Preamble sampling protocols are most energy saving ones compared with
 - Reservation based protocols, e.g., TDMA
 - Protocols with common active periods, e.g., S-MAC

Preamble Sampling Protocols: Classification

- Short preamble burst
 - e.g., X-MAC, SpeckMac, ContikiMAC
- Remembering receiver's next wake up time
 - e.g., WiseMAC, TrawMAC, SyncWUF
- Duty cycle adaptation

TR-MAC: States

- *Unsynchronized links:* Short data-listen bursts are sent until it is acknowledged by the receiver
- Synchronized links: Both transmitter and receiver can can store each other's next periodic wake up to reduce datalisten burst length

TR-MAC: Unsynchronized Links

- Link identifier can be derived from short preamble
- Small data packet is attached to the preamble
- Introduces listen periods after every preamble/data packet cause transmission is costly
- Minimizes the total data-listen iteration duration based on ack from receiver
- Overhears only wake up if same offset is used, and can go back to sleep after receiving one preamble

TR-MAC: Unsynchronized Links

Preamble with data

Sleep

TR-MAC: Synchronized Links

- Nodes remember and possibly adapt each other's next wake up time
- Transmission can be either Tx-driven or Rxdriven => Ripple effect or Green wave
- Multiple access can be realized using different frequency offsets
- Duty cycle adaptation based on available energy on one node or application requirement

TR-MAC

Unsynchronized Link

Synchronized Link

TR-MAC: Multi-hop or Broadcasting

Ripple effect

Green wave

X-MAC, comparison with TR-MAC

WiseMAC, comparison with TR-MAC

Analysis: Unsynchronized Links

- Analytical Model (Equations are available in paper)
- Data rate = 25 kbps
- Data packet = 8 bits preamble + 16 bits header + 32 bits data
- ACK packet = 8 bits preamble + 16 bits header
- Check interval duration (T_w) = Periodic listen (T_i)

+ Sleep duration (T_s)

Parameters	TR-MAC	X-MAC [4]	WiseMAC [7]
Preamble duration, $T_{\rm P}$	8 bits (.32 ms)	65 bits (2.6 ms)	$T_{ m W}$
$ACK duration, T_A$	24 bits (.96 ms)	65 bits (2.6 ms)	80 bits (3.2 ms)
Header duration, $T_{\rm H}$	16 bits (.64 ms)	16 bits (.64 ms)	16 bits (.64 ms)
Data duration, T_{Data}	32 bits (1.28 ms)	32 bits (1.28 ms)	32 bits (1.28 ms)
Data+header duration, $T_{\rm D}$	56 bits (2.24 ms)	48 bits (1.92 ms)	48 bits (1.92 ms)
Power to send, P_{Tx}	$2~\mathrm{mW}$	$1~\mathrm{mW}$	1 mW
Power to receive, P_{Rx}	$1~\mathrm{mW}$	$1~\mathrm{mW}$	$1 \mathrm{\ mW}$

Energy to Send a Packet

Periodic Listen Energy

Additional Energy to Receive a Packet

Conclusion

- TR-MAC with noise-based TR modulation is
 - Energy-efficient by optimally exploiting characteristics of TR modulation
 - Suitable for short range low data rate applications
 - Flexible towards applications and network layer

Future Work

- Model the synchronized link stage for TR-MAC and compare with X-MAC and WiseMAC
- Compare TR-MAC with some other protocols that send data instead of preamble
- Finally, energy harvesting will be incorporated in the model in future

Comments & Questions

