Mobility patterns: implications on network parameters and handover

Enrica Zola

Second Joint ERCIM eMobility and MobiSense Workshop St. Petersburg, June 4th, 2013

Overview

Wireless networks → support to mobility

Layout

- **Network planning**
- Min. coverage
- Higher density for capacity

Overview

Wireless networks → support to mobility

Mobility pattern

- User behaviour
- Real vs simulated patterns
 - RWP

Layout

Overview

Wireless networks → support to mobility **Layout Mobility pattern Handover** Resource allocation **Predictions**

Departament

Outline

1. Impact of mobility patterns on teletraffic variables

Number of handovers and cell residence time in different scenarios and with different mobility patterns

- Forecasting the handover for RWP users
- User behaviour in real WLANs
 - Analysis of the cell residence time
 - How much are they mobile?
 - Comparison with similar studies

Impact of Mobility Patterns on Teletraffic Variables

- Impact of Mobility Patterns on Teletraffic Variables
- Forecasting the Handover
- User Behaviour in Real WLANs
- Conclusions

Motivation

Importance of choosing an appropriate mobility model for a given network performance evaluation

Camp, T., Boleng, J., and Davies, V. "A Survey of Mobility Models for Ad-Hoc Network Research", Wireless Communications and Mobile Computing, vol. 2, pp. 483-502, Aug. 2002

- Special interest on the impact of mobility models on routing in MANETs
- For simplicity, many authors assumed the cell residence time (crt) to be exponentially distributed
 - More recent studies from real traces \rightarrow heavy-tail distribution

Thajchayapong, S., Peha, J.M., "Mobility Patterns in Microcellular Wireless Networks", IEEE Transactions on Mobile Computing, vol. 5, no. 1, pp. 52-63, Jan. 2006

- Impact of the mobility model on crt and number of handover
 - E. Zola, F. Barcelo-Arroyo, "Impact of mobility models on the cell residence time in WLAN networks", Proc. IEEE Sarnoff Symposium, ISBN: 978-1-4244-3382-7, Princeton (USA), March 2009

Departament

Simulation setup

- Simulation with Omnet + INET Framework
- Different layouts in a square area
 - 4, 8 or 16 Access Points (AP)
 - Full coverage with minimum nº of APs and overcoverage for high capacity
- Different mobility models
 - One memory-less mobility pattern (RWP)
 - One with memory (<u>Gauss-Markov</u>)
 - Pedestrian users (speed among 0.7 and 2.0 m/s)

Departament

- With more APs
 - Mean cell residence time (crt) decreases for all models
 - Higher stability for RWP
 - Higher variability for Gauss-Markov patterns
- With higher speed
 - Mean crt decreases
 - Not for Gauss-Markov 4AP scenario
 - More stability
 - Not for Gauss-Markov
- Smoother changes in the movements
 higher variability in the statistics (crt)

Statistical Distribution

- Histogram of the cell residence time for 4AP scenario and RWP
 - High concentration of very short values (< 5 s)
 - Pdf can be a combination of two distributions
- Same pattern for the other scenarios

Goodness of Fit Test

- Crt > 5 seconds
- MLE to estimate the parameters for the two distributions
- Kolmogorov-Smirnov GOF test (α =5%)
 - Higher *p-value* = better fit

		p-value				
		Gamma	Lognormal			
4	RWP	0.99	0.85			
4AP	Gauss-Markov	0.83	0.83			
8AP	RWP	0.96	0.99			
4	Gauss-Markov	0.42	0.99			
16AP	RWP	0.74	0.74			
AP	Gauss-Markov	0.57	0.99			

Number of Handovers

	4AP	8AP	16AP
RWPu-0	10.96	6.34	4.92
RWPu-100	7.13	3.89	2.85
Gauss-Markov	7.05	6.79	7.37

- Average number of handovers per hour and AP
 - With a higher number of AP
 - RWP: decreases
 - BMGauss: very stable

Departament

Forecasting the Handover

- Impact of Mobility Patterns on Teletraffic Variables
- Forecasting the Handover
- User Behaviour in Real WLANs
- Conclusions

Motivation

- Interest in mobility prediction to aid the HO process + RWP largely used in simulation and extensively studied
 - Mathematical expressions for: transition length and time; cell change rate; mean arrival rate

Bettstetter, C., Hartenstein, H., and Pérez-Costa, X., "Stochastic Properties of the Random Waypoint Mobility Model", ACM *Wireless Networks*, vol. 10, no. 5, pp. 555-567, Sept 2004

Hyytiä, E. And Virtamo, J., "Random Waypoint Mobility Model in Cellular Networks", *ACM Wireless Networks*, vol. 13, no. 2, pp. 177-188, 2007

- Analytical framework for forecasting the handover
- Probability that, within a given interval, a user will perform a handover
 - To which of the neighbouring cells?

E. Zola, F. Barcelo-Arroyo, I. Martín-Escalona, "Forecasting the Next Handoff for Users Moving with the Random Waypoint Mobility Model", *EURASIP Journal on Wireless Communications and Networking*, 2013:16, January 2013

Departament

Problem Statement

- Movements inside a circular area A
- APs are placed on a regular polygon inside A
- Ideal conditions (no fading, no noise)
- When the node is inside an overlapping area, the HO starts when the node exits the coverage area of the current cell
- A maximum of one change in transition may occur during Δt
- Current position P_t at time t is known
- Position and time of last waypoint are known

Probability of Handover

- Split the problem
 - A. If MN changes transition after $\Delta t \rightarrow$ $v_i \cdot \Delta t \le x_t$ (No HO) or $v_i \cdot \Delta t > x_t$ (HO)
- If MN changes tran tion before △t → Pr{HOa} $Y+v_i*\Delta t$

 $Pr\{HO\} = Pr\{HO \text{ in } \Delta t \mid \text{ change tr. after } \Delta t\}$ · Pr{change transition after Δt} + $Pr\{Hoa\} \cdot Pr\{change tr. at tc<\Delta t\}$

Time = t

Time = $t + 0.1/v_j$

Time = $t + 0.2/v_i$

Time = $t + \Delta t$

Numerical vs Simulation

	Pr{HO1}	<i>Pr{HO2}</i>	<i>Pr{HO3}</i>	<i>Pr{HO4}</i>	Pr{HO}	Pr{NOHO}
1	0.83 0.64	0 (*)	0.83 0.58	0.06 0.02	1.72 1.24	98.28 98.76
2	0.62 0.46	97.43 98.08	0.62 0.49	0 (*)	98.68 99.02	1.32 0.98
3	0 (*)	0	0	29.94 26.20	29.94 26.20	70.06 73.80
4	99.90 99.65	0.02 0.08	0.04 0.11	0 (*)	99.96 99.84	0.04 0.16
5	0 (*)	0	0	0	0	100 100
6	0.75 0.35	0 (*)	0.78 0.44	0.01 0.00	1.54 0.79	98.46 99.21
7	0 (*)	68.20 70.76	2.04 0.96	8.99 6.27	79.23 77.98	20.77 22.02
8	0 (*)	90.43 93.66	2.48 1.20	3.31 2.40	96.22 97.27	3.78 2.73
9	0.02 0.01	0.14 0.06	0 (*)	81.18 84.87	81.34 84.94	18.66 15.06
10	0 (*)	19.59 25.30	5.35 3.21	11.21 14.50	36.15 43.00	63.85 57.00

User Behaviour in Real WLANs

- Impact of Mobility Patterns on Teletraffic Variables
- Forecasting the Handover
- User Behaviour in Real WLANs
- Conclusions

Motivation

- Research on the use of the WLAN in real environments
 - <u>Different scenarios</u>: campus-wide universities, corporate networks, conference rooms, ...
 - Data collected from 1999 to 2004 (OLD)

Kotz, D. And Essien, K., "Analysis of a Campus-Wide Wireless Network", ACM Wireless Networks, vol. 11, no. 1-2, pp. 115-133, 2005

Henderson, T., Kotz, D. and Abyzov, I., "The Changing Usage of a Mature Campus-Wide Wireless Network", ACM Wireless Networks, vol. 52, no. 14, pp. 2690-2712, 2008

Balanziska, M. and Castro, P., "Characterizing Mobility and Network Usage in a Corporate Wireless Local-Area Network", in *Proc. MobiSys*, pp. 303-316, May 2003

Balachandran, A., Voelker, GM., Bahl, P., and Rangan, PV., "Characterizing User Behavior and Network Performance in a Public Wireless LAN", in *Proc. SIGMETRICS*, pp. 195-205, June 2002

- Mobility trends in our university
- E. Zola, F. Barcelo-Arroyo, M. López-Ramírez, "User behaviour in a WLAN campus: a real case study", *Proc. Third ERCIM Workshop on* eMobility, pp. 67-77, Enschede (The Netherlands), 27-28 May 2009
- E. Zola, F. Barcelo-Arroyo, "A comparative analysis of the user behavior in academic WiFi networks", *Proc. of the 6th ACM PM2HW2N Workshop*, pp. 59-66, Miami Beach (Florida, USA), October 31-November 4, 2011

Library
building in
main campus

ilding in ain campus		AP102	AP202		
	Mean	415.92 s (7 min)	294.67 s (5 min)		
	Median	86 s	66 s		
	Max Value	14339 s (~4 hours)	15558 s (4h 20m)		
	CV	2.99	3.38		
	Sample	1036	929		

Very high concentration of short crt

Median: 1 to 1.5 minutes

New analysis

- No HO users: users connected to only one AP per day
- HO users: users connected to different APs per day

Departament

Library bui mai

ilding in			AP102		AP202			
in campus		Overall	No HO	НО	Overall	No HO	НО	
	Mean	415.92 (7 min)	1479.80 (~25 min)	272.6 (~5 min)	294.67 (5 min)	631.50 (~10 min)	258.99 (~4min)	
	Median	86	218	76	66	136	61	
	Max Value	14339 (~4 hours)	14339 (~4 hours)	10389 (~3 hours)	15558 (4h 20m)	15558 (4h 20m)	11976 (3h 20m)	
	CV	2.99	1.80	2.93	3.38	2.75	3.38	
	Sample	1036	123 (11.87%)	913 (88.13%)	929	89 (9.58%)	840 (90.42%)	

No HO users

- Higher mean crt
- More stable results

Library buil mai

lding in		AP102		AP202			
in campus	Overall	No HO	НО	Overall	No HO	НО	
Mean	415.92 (7 min)	1479.80 (~25 min)	272.6 (~5 min)	294.67 (5 min)	631.50 (~10 min)	258.99 (~4min)	
Median	86	218	76	66	136	61	
Max Value	14339 (~4 hours)	14339 (~4 hours)	10389 (~3 hours)	15558 (4h 20m)	15558 (4h 20m)	11976 (3h 20m)	
CV	2.99	1.80	2.93	3.38	2.75	3.38	
Sample	1036	123 (11.87%)	913 (88.13%)	929	89 (9.58%)	840 (90.42%)	

- No HO users
 - Higher mean crt
 - More stable results
- **HO users** (≈90% of the population)
 - Mean crt is 4.5 minutes
 - Still high CV

Departament

- High concentration of very short crt
 - Even for "No HO users"

Departament

Analysis in different buildings

- Mobility inside each building is low
 - Also observed in other campuses
- Many devices never associate to more than one AP during the day
- Active devices unevenly distributed across APs
 - Some APs often deal with a high number of users simultaneously associated with them, while others are usually idle
- Users on a small campus are more likely to reappear on different days (higher fidelity)

Activity Trends Comparison

Ref.	Environment	Buildings	% of users up to 2 days:	50% of users connect up to [% of total days]:	10% of the users connect more than [% of total days]:
Our	Campus	BRGF	53	5	31
work		EDSE	35	10	51
		EETAC	24	15	59
[KO]	Campus		10	36	91
[MC]	Campus		11	25	75

- Very different behaviour in same environment
- The distribution in [KO] is roughly uniform between one and 77 days

[KO] D. Kotz, and K. Essien, "Analysis of a Campus-Wide Wireless Network," Wireless Networks, vol. 11, no. 1-2, January 2005, pp. 115-133

[MC] M. McNett, and G.M. Voelker, "Access and Mobility of Wireless PDA Users," ACM Sigmobile Mobile Computing and Communications Review, vol. 9, no. 2, April 2004, pp. 40-55

Departament

Activity Trends Comparison

Ref.	Environment	Buildings	% of users up to 2 days:	50% of users connect up to [% of total days]:	10% of the users connect more than [% of total days]:
Our work	Campus	BRGF EDSE EETAC	53 35 24	5 10 15	31 51 59
[BA]	Corporate network	Large Medium Small	24 22 38	12 27 30	67 63 60

- Very similar behaviour in corporate network
 - At UPC, students do not spend the night inside the Campus

[BA] M. Balazinska, and P. Castro, "Characterizing Mobility and Network Usage in a Corporate Wireless Local-Area Network," Proc. of the 1st International Conference on Mobile Systems. Applications and Services (MobiSys'03), ACM, New York, May 5-8, 2003, pp. 303-316

Departament

Conclusions

- Impact of Mobility Patterns on Teletraffic Variables
- Forecasting the Handover
- User Behaviour in Real WLANs
- Conclusions

Conclusions (I)

- Network planning benefits from the knowledge of users' movements
 - An analytical framework has been proposed in order to predict future associations for users moving with one of the most used mobility models (RWP)
 - The error in the prediction is always very low
 - The prediction may be used in order to allocate resources and facilitate the handover task
 - Real traces show low mobility but high number of handovers (short crt) and uneven distribution among the APs

Conclusions (II)

- The mobility pattern has key consequences on the traffic properties
 - Smoother mobility patterns mean higher cell residence time (i.e. Gauss-Markov) and higher variability
 - The HO behaviour of Gauss-Markov pattern is very stable compared to the RWP
 - Cell residence time as a combination of two distributions
 - Very short connections
 - Also observed in real traces
 - Another distribution depending on the mobility pattern

Questions?

- Impact of Mobility Patterns on Teletraffic Variables
- Forecasting the Handover
- User Behaviour in Real WLANs
- Conclusions

Mobility Models: RWP

Departament

Mobility Models: Gauss-Markov

Departament

Random Waypoint

Waypoints uniformly distributed in A

Speed from uniform distribution $[v_{min}; v_{max}]$

Problem Statement

- Movements inside a circular area A
- APs are placed on a regular polygon inside A
- Ideal conditions (no fading, no noise)

Departament

Problem Statement

- Movements inside a circular area A
- APs are placed on a regular polygon inside A
- Ideal conditions (no fading, no noise)
- When the node is inside an overlapping area, the HO starts when the node exits the coverage area of the current cell
- A maximum of one change in transition may occur during Δt

Probability of Handover

- If MN changes transition at tc <
 Δt → Pr{HOa}
 - At the WP, a new speed and a new WP are chosen
 - Area with all the possible positions that the node may reach when it changes transition
 - Orange area → handover

$$\begin{split} Pr\{HOa|r = 0\} &= \int_{\theta A4}^{\theta A1} f_{\Theta}(\theta|d_{t}(0)) \cdot \frac{d3(\theta,0)}{d3(\theta,0)} d\theta + \int_{\theta A1}^{\theta A3} f_{\Theta}(\theta|d_{t}(0)) \cdot \frac{d1(0)}{d1(0)} d\theta + \\ &\int_{\theta A3}^{\theta A2} f_{\Theta}(\theta|d_{t}(0)) \cdot \frac{d2(\theta,0)}{d1(0)} d\theta. \end{split}$$

$$Pr\{HOa\} = \begin{cases} \int_0^{x_A(\theta)} Pr\{HOa|r\} \cdot f_R(r) dr & \text{if } x_t(\theta') < v_j \cdot \Delta t \text{ and } x_t(\theta') < x_A(\theta) \\ \int_0^{x_A(\theta)} Pr\{HOa|r\} \cdot f_R(r) dr & \text{if } x_t(\theta') \geqslant x_A(\theta) \end{cases}$$

